• 제목/요약/키워드: GHT(General Hough Transform)

검색결과 3건 처리시간 0.017초

외곽선 영상과 Support Vector Machine 기반의 문고리 인식을 이용한 문 탐지 (Door Detection with Door Handle Recognition based on Contour Image and Support Vector Machine)

  • 이동욱;박중태;송재복
    • 제어로봇시스템학회논문지
    • /
    • 제16권12호
    • /
    • pp.1226-1232
    • /
    • 2010
  • A door can serve as a feature for place classification and localization for navigation of a mobile robot in indoor environments. This paper proposes a door detection method based on the recognition of various door handles using the general Hough transform (GHT) and support vector machine (SVM). The contour and color histogram of a door handle extracted from the database are used in GHT and SVM, respectively. The door recognition scheme consists of four steps. The first step determines the region of interest (ROI) images defined by the color information and the environment around the door handle for stable recognition. In the second step, the door handle is recognized using the GHT method from the ROI image and the image patches are extracted from the position of the recognized door handle. In the third step, the extracted patch is classified whether it is the image patch of a door handle or not using the SVM classifier. The door position is probabilistically determined by the recognized door handle. Experimental results show that the proposed method can recognize various door handles and detect doors in a robust manner.

다중 해상도 에지 정합을 이용한 임의물체 검색 시스템의 설계 및 구현 (A Design and Implementation of Arbitrary Retrieval System Using Multi-resolution Edge Mathcing)

  • 이강호;안용학
    • 한국컴퓨터정보학회논문지
    • /
    • 제9권3호
    • /
    • pp.95-102
    • /
    • 2004
  • 본 논문에서는 작은 형태정보의 차이를 감지할 수 있고 부분적인 입력 패턴도 효과적으로 검색할 수 있는 윤곽선 정보를 기반으로 하는 GHT와 다중 해상도 검색 방법을 제안한다. 제안된 방법은 부분적인 에지 정보를 효율적으로 사용할 수 있고 작은 형태변화를 구분할 수 있어서 도검과 같은 유사한 물체를 효과적으로 구분할 수 있다. 또한, 에지 리스트를 이용한 다중 해상도 에지 생성과 계층적인 패턴 정합을 통해서 신속하고 정확한 검색을 가능하게 한다. 실험 결과, 제안된 방법은 도검과 같은 임의 물체에 대해 높은 검색율을 보였다.

  • PDF

센서융합을 통한 시맨틱 지도의 작성 (Sensor Fusion-Based Semantic Map Building)

  • 박중태;송재복
    • 제어로봇시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.277-282
    • /
    • 2011
  • This paper describes a sensor fusion-based semantic map building which can improve the capabilities of a mobile robot in various domains including localization, path-planning and mapping. To build a semantic map, various environmental information, such as doors and cliff areas, should be extracted autonomously. Therefore, we propose a method to detect doors, cliff areas and robust visual features using a laser scanner and a vision sensor. The GHT (General Hough Transform) based recognition of door handles and the geometrical features of a door are used to detect doors. To detect the cliff area and robust visual features, the tilting laser scanner and SIFT features are used, respectively. The proposed method was verified by various experiments and showed that the robot could build a semantic map autonomously in various indoor environments.