• Title/Summary/Keyword: GHGs

Search Result 132, Processing Time 0.029 seconds

Some Thoughts on LCCO2 of the Railway Track System (철도 궤도시스템의 LCCO2에 관한 소고)

  • Minnu, Tian;Lee, Woo-Chul;Choi, Sang-Hyun;Lim, Nam-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.548-551
    • /
    • 2009
  • The report of the intergovernment panel on climate change(IPCC) concluded that the global warning due to Green-house Gas(GHGs) will be accelerated in the 21th century. The railroad construction sector consumes a great deal of natural resources and energy in construction. maintenance, and demolition stage. In order to establish and perform reducing plan of GHGs of railway track system for effective corresponding the Climate Change Agreement, the evaluation method of the lifecycle CO2 emission if needed. In this research, it was investigates that the research trend for the LCCO2 and the method to estimate the lifecycle carbon dioxide emission amount of the railway track system as quantitative.

  • PDF

Study on Gangwon Wind Park CDM project (강원풍력발전 CDM 사업 사례 연구)

  • Park, Keum-Joo;Jung, Jae-Soo;Lee, Moon-Gu;Kim, Doo-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.298-303
    • /
    • 2006
  • CDM(Clean Development Mechanism) is one of three Kyoto mechanisms. As a non-annex I party of UNFCCC, Korea can host CDM projects. Currently eight CDM projects are hosted in Korea under Kyoto protocol. Six of these CDM projects are related to renewable energy power generation. Renewable energy power plants assumes zero GHGs emission and has great potential to become CDM projects which is very environmental friendly energy Gangwon wind park CDM project is the first renewable CDM project in Korea. In this research, emission factors and additionality proving process are studied, which are important procedures of doing CDM project.

  • PDF

Study on Gangwon Wind Park CDM project (강원풍력발전 CDM 사업 사례 연구)

  • Park, Keum-Joo;Jung, Jae-Soo;Lee, Moon-Gu;Kim, Doo-Hoon
    • New & Renewable Energy
    • /
    • v.2 no.1 s.5
    • /
    • pp.66-71
    • /
    • 2006
  • CDM(Clean Development Mechanism) is one of three Kyoto mechanisms. As a non-annex I party of UNFCCC, Korea can host CDM projects. Currently eight CDM projects are hosted in Korea under Kyoto protocol. Six of these CDM projects are related to renewable energy power generation. Renewable energy power plants assumes zero GHGs emission and has great potential to become COM projects which is very environmental friendly energy. Gangwon wind park CDM project is the first renewable CDM project in Korea. In this research, emission factors and additionality proving process are studied, which are important procedures of doing CDM project.

  • PDF

A Study on the Estimation of GHG Emissions using a Real World Vehicle Driving Information (실차 운행정보를 이용한 온실가스 배출량 산정에 관한 연구)

  • Park, Geon Jin;Kim, Pil Su;Choi, Sang Jin;Han, Yong Hee;Lee, Heon Ju;Lee, Gap Sang;Jang, Young Kee
    • Journal of Climate Change Research
    • /
    • v.6 no.2
    • /
    • pp.143-158
    • /
    • 2015
  • This study developed the emission intensity estimation method of GHGs by considering the characteristics of the models and time series. The telematics device was installed on the vehicle (OBD-II) to collect information on the operation conditions from each sample vehicle of public authorities. As a result of comparing the mileage distance and fuel consumption, the matching degree is analyzed very high, showed a ${\pm}1{\sim}4%$ error for each vehicle. By comparing driving record diary of vehicles managed by public authorities, this study presents the method that can be used to verify driving information in order to derive the GHGs emission intensity.

Estimation of GHG emissions and footprint from Daecheong Reservoir using G-res Tool

  • Min, Kyeongseo;Kim, Dongmin;Chung, Sewoong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.209-209
    • /
    • 2022
  • Reservoirs play a key role in the carbon cycle between terrestrial and marine systems and are pathways that release greenhouse gases(GHGs), CO2, CH4, and N2O, into the atmosphere by decomposing organic matters. Developed countries have been actively conducting research on carbon emission assessment of dam reservoirs for over 10 years under the leadership of UNESCO/IHA, but associated research is very rare in Korea. In particular, the GHGs footprint evaluation, which calculates the change in net carbon emission considering the watershed environment between pre- and post- impoundment, is very important in evaluating the carbon emission of hydroelectric dams. The objective of this study was to estimate the GHG emissions and footprints in Daecheong Reservoir using the G-res Tool, an online platform developed by UNESCO/IHA. The G-res Tool estimates CO2 and CH4 emissions in consideration of diverse pathway fluxes of GHGs from the reservoir and characterizes changes in GHG fluxes over 100 years based on the expected lifetime of the dam. The input required to use the G-res Tool include data related to watersheds, reservoirs, and dams, and most were collected through the government's public portal. As a result of the study, the GHG footprint of Daecheong Reservoir was estimated to be 93 gCO2eq/m2/yr, which is similar to that of other reservoirs around the world in the same climate zone. After impoundment, the CH4 diffusion emission from the reservoir was 73 gCO2eq/m2/yr, also similar to those of the overseas reservoirs, but the CH4 bubbling emission, degassing emission, and CO2 diffusion emissions were 44, 34, 252 gCO2eq/m2/yr, respectively, showing a rather high tendency. Since the dam reservoir carbon footprint evaluation is essential for the Clean Development Mechanism evaluation of hydroelectric power generation, continuous research is needed in the future. In particular, experimental studies that can replace the emission factors obtained from the overseas dam reservoirs currently used in the G-res Tool should be promoted.

  • PDF

Effects of Additives on Greenhouse Gas Emission during Organic Waste Composting: A Review and Data Analysis (첨가제가 유기성 폐기물 퇴비화 과정 중 온실가스 발생에 미치는 영향: 리뷰 및 데이터 분석)

  • Seok-Soon Jeong;Byung-Jun Park;Jung-Hwan Yoon;Sang-Phil Lee;Jae-E. Yang;Hyuck-Soo Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.358-370
    • /
    • 2023
  • Composting has been proposed for the management of organic waste, and the resulting products can be used as soil amendments and fertilizer. However, the emissions of greenhouse gases (GHGs) such as CO2, CH4, and N2O produced in composting are of considerable concern. Hence, various additives have been developed and adopted to control the emissions of GHGs. This review presents the different additives used during composting and summarizes the effects of additives on GHGs during composting. Thirty-four studies were reviewed, and their results showed that the additives can reduce cumulative CO2, CH4, and N2O emission by 10.5%, 39.0%, and 28.6%, respectively, during composting. Especially, physical additives (e.g., biochar and zeolite) have a greater effect on mitigating N2O emissions during composting than do chemical additives (e.g., phosphogypsum and dicyandiamide). In addition, superphosphate had a high CO2 reduction effect, whereas biochar and dicyandiamide had a high N2O reduction effect. This implies that the addition of superphosphate, biochar, and dicyandiamide during composting can contribute to mitigating GHG emissions. Further research is needed to find novel additives that can effectively reduce GHG emissions during composting.

Mitigation of Greenhouse Gases by Water Management of SRI (System of Rice Intensification) in Rice Paddy Fields (논에서 SRI (System of Rice Intensification) 물 관리 방법을 적용한 온실가스 저감 효과)

  • Kim, Gun-Yeob;Lee, Seul-Bi;Lee, Jong-Sik;Choi, Eun-Jung;Ryu, Jong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1173-1178
    • /
    • 2012
  • Water competition among domestic, industrial and agricultural sectors has been gradually heightened recently in Korea as the lack of water supply is expected in the near future. About 46% of nation's water use is consumed in paddy farming to produce rice. And the conservation of water resource and quality in agricultural sector is a pending issue in the nation's long term water management plan. New paddy rice farming techniques that use significantly less irrigation water are urgently required. System of Rice Intensification (SRI) that is now well known to produce more rice with less water consumption has not been tried in Korea yet. And environmental effect of SRI on greenhouse gases (GHGs) has not been well investigated. The objective of this study was to measure the effect of SRI on GHGs as well as water use and rice yield in a Korean paddy condition. Three experimental runoff plots $5{\times}15m$ in size were prepared at an existing paddy field. Runoff, GHGs emission and water quality were measured during the 2011 growing seasons while a Japonica rice variety was cultivated. Rice plants grew better and healthier in SRI plots than in continuously flooded (CF) and intermittently drained (ID) plots. Rice yield from SRI plots increased 112.8 (ID)~116.1 (CF)% compared with CF and ID plots. Irrigation requirement of SRI plots compared to CF plot reduced by 52.6% and ID plot reduced by 62.0%, meaning that about 37.9~47.4% of irrigation water could be saved. GHGs emission from SRI plots reduced by 71.8% compared to that from CF plot and by 18.4% compared to that from ID plot, meaning that SRI could help contribute to ease the greenhouse gas accumulation in the atmosphere. It was believed that SRI is a promising paddy farming technique that could increase rice yield, and reduce irrigation water requirement and GHGs emission not just in Korea but also other rice farming countries all over the world. However, it was recommended that long term studies under different conditions including rice variety, soil texture, water source, climate need to be conducted for reliable data for the development of environmental policies related to GHGs emission control and management.

Applied Technologies and Effects for the Carbon Zero Office Building (업무용 탄소제로건물의 적용기술 및 효과)

  • Lee, Jae-Bum;Hong, Sung-Chul;Beak, Name-Choon;Choi, Jin-Young;Hong, You-Deog;Lee, Suk-Jo;Lee, Dong-won
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.283-295
    • /
    • 2011
  • Many actions against climate change have been taken to reduce greenhouse gases (GHGs) emissions at home and abroad. As of 2007, the GHGs emitted from buildings accounted for about 23 % of Korea's total GHGs emission, which is the second largest GHG reduction potential following industry. In this study, we introduced Carbon Zero Building (CZB), which was constructed by the National Institute of Environmental Research to cut down GHGs from buildings in Korea, and evaluated the main applied technologies, the amount of energy load and reduced energy, and economic values for CZB to provide data that could be a basis in the future construction of this kind of carbon-neutral buildings. A total of 66 technologies were applied for this building in order to achieve carbon zero emissions. Applied technologies include 30 energy consumption reduction technologies, 18 energy efficiency technologies, and 5 eco-friendly technologies. Out of total annual energy load ($123.8kWh/m^2$), about 40% of energy load ($49kWh/m^2$) was reduced by using passive technologies such as super insulation and use of high efficiency equipments and the other 60% ($74.8kWh/m^2$) was reduced by using active technologies such as solar voltaic, solar thermal, and geothermal energy. The construction cost of CZB was 1.4 times higher than ordinary buildings. However, if active technologies are excluded, the construction cost is similar to that of ordinary buildings. It was estimated that we could save annually about 102 million won directly from energy saving and about 2.2 million won indirectly from additional saving by the reduction in GHGs and atmospheric pollutants. In terms of carbon, we could reduce 100 ton of $CO_2$ emissions per year. In our Life Cycle Cost (LCC) analysis, the Break Even Point (BEP) for the additional construction cost was estimated to be around 20.6 years.

Analysis of research trends in methane emissions from rice paddies in Korea

  • Choi, Eun-Jung;Lee, Jae-Han;Jeong, Hyun-Cheol;Kim, Su-Hun;Lim, Ji-Sun;Lee, Dong-Kyu;Oh, Taek-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.4
    • /
    • pp.463-476
    • /
    • 2017
  • Climate change is considered as the greatest threat to our future and descendants. The Korean government has set a target for 2030 to reduce emission of greenhouse gases (GHGs) by 37% from the business-as-usual levels which are projected to reach 851 million metric tons of $CO_2eq$ (Carbon dioxide equivalent). In Korea, GHGs emission from agriculture account for almost 3.1% of the total of anthropogenic GHGs. The GHGs emitted from agricultural land are largely classified into three types: carbon dioxide ($CO_2$), methane ($CH_4$), and nitrous oxide ($N_2O$). In Korea, rice paddies are one of the largest agricultural $CH_4$ sources. In order to analyze domestic research trends related to $CH_4$ emission from rice paddies, 93 academic publications including peer reviewed journals, books, working papers, reports, etc., published from 1995 to September 2017, were critically reviewed. The results were classified according to the research purposes. $CH_4$ characteristics and assessment were found to account for approximately 65.9% of the research trends, development of $CH_4$ emission factors for 9.5%, $CH_4$ emission reduction technology for 14.8%, and $CH_4$ emission modeling for 6.3%, etc. A number of research related to $CH_4$ emission characteristics and assessment have been studied in recent years, whereas further study on $CH_4$ emission factors are required to determine an accurate country-specific GHG emission from rice paddies. Future research should be directed toward both studies for reducing the release of $CH_4$ from rice paddies to the atmosphere and the understanding of the major controlling factors affecting $CH_4$ emission.