• Title/Summary/Keyword: GHG(Greenhouse Gas)

Search Result 389, Processing Time 0.028 seconds

Nonlinear Optimization Analysis of the Carryover Policy in the 2nd Compliance Period of the Korean Emissions Trading Scheme (배출권거래제 2차 계획기간 중 이월한도 정책에 대한 비선형최적화 분석)

  • Jongmin Yu;Seojin Lee
    • Environmental and Resource Economics Review
    • /
    • v.32 no.3
    • /
    • pp.149-166
    • /
    • 2023
  • The emissions trading system, introduced to reduce greenhouse gas emissions, experienced a sharp increase in emission allowance prices during the second plan period (2018-2020), which led to an increase in the demand for smooth supply and demand of emission allowances, while suppliers anticipating a shortage of emission allowances in the future did not participate in trading. Therefore, the authority temporarily revised the guidelines to ensure that the amount of allowances carried forward is proportional to the trading volume as a market stabilization measure. Through an optimization process using a dynamic nonlinear mathematical model, this paper analyzes the impact of the government's intervention on the carryover policy on GHG emission reductions and emission allowance market prices. According to the simulation analysis results, banking regulations could cause a decline in prices during the regulation period, even though the initial policy was predicted to be adopted.

Demonstration of Low-carbon Pre-oxidation Technology for Algae Using Sodium Permanganate (과망간산나트륨을 활용한 조류 대응 저탄소 전산화기술 실증화 연구)

  • Junsoo, Ha;Daniel Sangdu, Hur;Chaieon, Im;Donghee, Jung;Youngseong, Lim;Jinkyong, Ju
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.6
    • /
    • pp.267-274
    • /
    • 2022
  • This paper is a result of research conducted on the 800,000 m3/d capacity of A Water Treatment Plant (WTP) and 400,000 m3/d capacity of B WTP plant in operation in the Nakdong River region. We evaluated the effect of algae broom on the WTP operation based on the running data of both WTP and the data on the pre-oxidation process field test for algae control using sodium permanganate (SPM) at the B WTP. The study results showed that during the algal bloom period, the coagulant dose increased by 102% in A WTP and 58% in B WTP, respectively, and the chlorine dose also increased by 38% and 29%, respectively, which may affect Total trihalomethane (THM) production. Data such as algal populations and Chl-a, residual chlorine and THM, algal populations, and ozone dose appeared also highly correlated, confirming that algal broom affects WTP operations, including water quality and chemical dosage. As a result of the field test of B WTP, THMs appeared lower than that of the control, suggesting the possibility of the SPM pre-oxidation process as an alternative to algae-related water quality management. Furthermore, in terms of GHG emissions due to energy consumption, it was observed that the pre-oxidation process using SPM was approximately 10.8%, which is a very low ratio compared to the pre-ozonation process. Therefore, these results suggest that the SPM pre-oxidation process can be recommended as an alternative to low-carbon water purification technology.

Economic and Environmental Effect Analysis of Rhodium Recycling System (로듐 재자원화의 경제적 및 환경적 효과 분석)

  • Seong You Lee;Kayoung Shin;Doo Hwan Kim;Yong Woo Hwang;Hong-Yoon Kang;Sung Min Hong;Da-Yeon Kim
    • Resources Recycling
    • /
    • v.32 no.3
    • /
    • pp.45-56
    • /
    • 2023
  • This study analyzed the economic and environmental effect of recycling rhodium used in the non-catalytic field. As an analysis methodology, economic effect analysis applied cost-benefit analysis and resource-saving effect analysis and the environmental effect analysis applied life cycle assessment (LCA). The results show that from an economic point of view, the cost-benefit ratio was 1.28, which was feasible, and the cost reduction was 237,000 won based on 1 g of rhodium recycled and the amount of rhodium recycled was 7.17 billion won in 2025. As for the environmental effect, the greenhouse gas(GHG) emissions were compared between the case of recycling based on rhodium 1 kg and the case of overseas sales. The calculation results show that based on rhodium 1 kg, greenhouse gas emissions were reduced by 99.8%, from 65 kg CO2eq./kg-Rh when recycling to 28,800 kg CO2eq. when sold overseas. The results obtained from this study could suggest that rhodium recycling is necessary in Korea where resources are scarce by analyzing the economic and environmental effect of recycling rhodium used in the non-catalytic field.

A Case Study to Estimate the Greenhouse-Gas Mitigation Potential on Conventional Rice Production System

  • Ryu, Jong-Hee;Lee, Jong-Sik;Kim, Kye-Hoon;Kim, Gun-Yeob;Choi, Eun-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.502-509
    • /
    • 2013
  • To estimate greenhouse gas (GHG) emission, we established inventory of conventional rice cultivation from farmers in Gunsan and Iksan, Jeonbuk province in 2011~2012. This study was to calculate carbon footprint and to analyse the major factor of GHGs. We carried out a sensitivity analysis using the analyzed main factors of GHGs and estimated the mitigation potential of GHGs. Also we tried to suggest agricultural methods to reduce GHGs that farmers of this case study can apply. Carbon footprint of rice production unit of 1 kg was 2.21 kg $CO_2.-eq.kg^{-1}$. Although amount of $CO_2$ emissions is largest among GHGs, methane had the highest contribution of carbon footprint on rice production system after methane was converted to carbon dioxide equivalent ($CO_2$-eq.) multiplied by the global warming potential (GWP). Source of $CO_2$ in the cultivation of rice farming is incomplete combustion of fossil fuels used by agricultural machinery. Most of the $CH_4$ emitted during rice cultivation and major factor of $CH_4$ emission is flooded paddy field in anaerobic condition. Most of the $N_2O$ emitted from rice cultivation process and major sources of $N_2O$ emission is application of fertilizer such as compound fertilizer, urea, orgainc fertilizer, etc. As a result of sensitivity analysis due to the variation in energy consumption, diesel had the highest sensitivity among the energies inputs. If diesel consumption is reduced by 10%, it could be estimated that $CO_2$ potential reduction is about 2.5%. When application rate of compound fertilizer reduces by 10%, the potential reduction is calculated to be approximately 1% for $CO_2$ and approximately 1.8% for $N_2O$. When drainage duration is decreased until 10 days, methane emissions is reduced by approximately 4.5%. That is to say drainage days, tillage, and reducing diesel consumption were the main sources having the largest effect of GHG reduction due to changing amount of inputs. Accordingly, proposed methods to decrease GHG emissions were no-tillage, midsummer drainage, etc.

A Study on Thermal Management of Stack Supply Gas of Solid Oxide Fuel Cell System for Ship Applications (선박 전원용 고체산화물형 연료전지(SOFC) 시스템의 스택 공급 가스의 열관리 문제에 관한 연구)

  • Park, Sang-Kyun;Kim, Mann-Eung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.765-772
    • /
    • 2011
  • In this research, the fuel cell system model capable of generating codes in real time was developed to construct of a HIL (Hardware-In-the-Loop) for a SOFC-powered ship. Moreover, the effects of the distribution of the exhaust gas flow rates in a stack, the flow rates of fuels and temperature of air supplied on the temperature characteristics of fuels supplied to the cathode and the anode, the output power of the stack and system efficiency are examined to minimize the temperature difference between fuels supplied to the stack used in a 500kW SOFC system using methane as a fuel. As a result, the temperatures of fuels supplied to the cathode and the anode maintain at 830K when the opening factor of three-way valve located at outlet of turbine is 0.839. Also the process for optimization of methane flow rate considering the fuel cell stack and system efficiency is required to increase the temperatures of fuels supplied to the stack.

Analysis of energy and daylight performance of adjustable shading devices in region with hot summer and cold winter

  • Freewan, Ahmed A.;Shqra, Lina W.
    • Advances in Energy Research
    • /
    • v.5 no.4
    • /
    • pp.289-304
    • /
    • 2017
  • Large glazed surfaces and windows become common features in modern buildings. The spread of these features was influenced by the dependence of designers on mechanical and artificial systems to provide occupants with thermal and visual comfort. Countries with hot summer and cold winter conditions, like Jordan, require maximum shading from solar radiation in summer, and maximum exposure in winter to reduce cooling and heating loads respectively. The current research aims at designing optimized double-positioned external shading device systems that help to reduce energy consumption in buildings and provide thermal and visual comfort during both hot and cold seasons. Using energy plus, a whole building energy simulation program, and radiance, Lighting Simulation Tool, with DesignBuilder interface, a series of computer simulations for energy consumption and daylighting performance were conducted for offices with south, east, or west windows. The research was based on comparison to determine the best fit characteristics for two positions of adjustable horizontal louvers on south facade or vertical fins on east and west facades for summer and winter conditions. The adjustable shading systems can be applied for new or retrofitted office or housing buildings. The optimized shading devices for summer and winter positions helped to reduce the net annual energy consumption compared to a base case space with no shading device or with curtains and compared to fix shading devices.

Nitrous Oxide Emission from Livestock Compost applied Arable Land in Gangwon-do

  • Seo, Young-Ho;Kim, Se-Won;Choi, Seung-Chul;Jeong, Byeong-Chan;Jung, Yeong-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.25-29
    • /
    • 2012
  • Agriculture activities account for 58% of total anthropogenic emissions of nitrous oxide ($N_2O$) with global warming potential of 298 times as compared to carbon dioxide ($CO_2$) on molecule to molecule basis. Quantifying $N_2O$ from managed soil is essential to develop national inventories of greenhouse gas (GHG) emissions. The objective of the study was to compare $N_2O$ emission from livestock compost applied arable land with that for fertilizer treatment. The study was conducted for two years by cultivating Chinese cabbage (Brassica campestris L.) in Chuncheon, Gangwon-do. Accumulated $N_2O$ emission during cultivation of Chinese cabbage after applying livestock compost was slightly greater than that for chemical fertilizer. Slightly greater $N_2O$ emission factor for livestock compost was observed than that for chemical fertilizer possibly due to lump application of livestock compost before crop cultivation compared with split application of chemical fertilizers and enhanced denitrification activity through increased carbon availability by organic matter in livestock compost.

Development of an Electronic Greenhouse Gas Emission Management Platform: Managerial Implications

  • BAE, Deogsang;CHO, Yooncheong
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.11
    • /
    • pp.7-18
    • /
    • 2020
  • Purpose: The Emission Trading Scheme (ETS), which enables structuring emission credits as a financial product, is taking a crucial position of global collaboration against climate change. Previous studies that have covered ETS subjects from the macro perspective contribute to facilitating legal enactment of this scheme. However, they have rarely addressed challenges aligned with issues arising from labor burdens for ETS works from the business perspective. Research Design, data and methodology: This study presents conceptual models that are expected to help design an electronic system. The study model contains four modules: emission allocation, data interface, reduction technology sharing, and emission trading. Two validation approaches, the Analytic Hierarchy Process (AHP) and regression analysis, are applied in confirming the feasibility of the proposed model. Results: This study suggests an IT system methodology to help improvement of the current K-ETS mechanism. In particular, this study addresses effectiveness for real businesses and the adaptability of this mechanism to other nations. Conclusions: The proposed IT platform diagram can contribute to successful operation of ETS by providing multiple benefits to participating companies through in-house allocation mechanisms, the soft-landing of ETS adoption to participating companies through reduction of technology-sharing, group purchases, and transaction costs through the trading system.

Renewable energy deployment policy-instruments for Cameroon: Implications on energy security, climate change mitigation and sustainable development

  • Enow-Arrey, Frankline
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.6 no.1
    • /
    • pp.56-68
    • /
    • 2020
  • Cameroon is a lower middle-income country with a population of 25.87 million inhabitants distributed over a surface area of 475,442 ㎢. Cameroon has very rich potentials in renewable energy resources such as solar energy, wind energy, small hydropower, geothermal energy and biomass. However, renewable energy constitutes less than 0.1% of energy mix of the country. The energy generation mix of Cameroon is dominated by large hydropower and thermal power. Cameroon ratified the Paris Agreement in July 2016 with an ambitious 20% greenhouse gas (GHG) emission reduction. This study attempts to investigate some renewable energy deployment policy-instruments that could enable the country enhance renewable energy deployment, gain energy independence, fulfill Nationally Determined Contribution (NDC) and achieve Sustainable Development Goals. It begins with an analysis of the status of energy sector in Cameroon. It further highlights the importance of renewable energy in mitigating climate change by decarbonizing the energy mix of the country to fulfill NDC and SDGs. Moreover, this study proposes some renewable energy deployment policy-solutions to the government. Solar energy is the most feasible renewable energy source in Cameroon. Feed-in Tariffs (FiT), is the best renewable energy support policy for Cameroon. Finally, this study concludes with some recommendations such as the necessity of building an Energy Storage System as well a renewable energy information and statistics infrastructure.

Policy Implementation Process of Korean Government's Public Diplomacy on Climate Change

  • Choi, Ga Young;Song, Jaeryoung;Lee, Eunmi
    • Asian Journal of Innovation and Policy
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • In 2015, the State Council of South Korea finalized its goal to reduce greenhouse gas emissions by "37% from the business-as-usual (BAU) level" by 2030 across all the economic sectors. Of that reduction, 4.5% will be achieved overseas by leveraging Emission Trading Systems (ETS) aided by international cooperation. In line with this, considering both the demand for and supply of the carbon market increased after the Paris agreement, the importance of public diplomacy in negotiating climate change actions also rose. This study aimed to analyze the impact of international discussions such as the United Nations Framework Convention on Climate Change (UNFCCC) on domestic policies and the types of public diplomatic climate change policies pursued by different government agencies, and draw implications from them. This study attempted to find implications from the Korean government's public diplomacy on climate change for developing countries. Lessons learned regarding Korea's public diplomacy would provide a practical guidance to the Asian developing countries, which are suffering from environmental crisis at a phase of rapid economic growth.