• Title/Summary/Keyword: GFRP-concrete-steel

Search Result 151, Processing Time 0.028 seconds

Numerical simulation of concrete beams reinforced with composite GFRP-Steel bars under three points bending

  • Elamary, Ahmed S.;Abd-ELwahab, Rafik K.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.937-949
    • /
    • 2016
  • Fiber reinforced polymer (FRP) applications in the structural engineering field include concrete-FRP composite systems, where FRP components are either attached to or embedded into concrete structures to improve their structural performance. This paper presents the results of an analytical study conducted using finite element model (FEM) to simulate the behavior of three-points load beam reinforced with GFRP and/or steel bars. To calibrate the FEM, a small-scale experimental program was carried out using six reinforced concrete beams with $200{\times}200mm$ cross section and 1000 mm length cast and tested under three point bending load. The six beams were divided into three groups, each group contained two beams. The first group was a reference beams which was cast without any reinforcement, the second group concrete beams was reinforced using GFRP, and the third group concrete beams was reinforced with steel bars. Nonlinear finite element simulations were executed using ANSYS software package. The difference between the theoretical and experimental results of beams vertical deflection and beams crack shapes were within acceptable degree of accuracy. Parametric study using the calibrated model was carried out to evaluate two parameters (1) effect of number and position of longitudinal main bars on beam behavior; (2) performance of concrete beam with composite longitudinal reinforcement steel and GFRP bars.

Lap Splice Length of Glass Fiber Reinforced Polymer (GFRP) Reinforcing Bar (GFRP 보강근의 이음성능)

  • Lee Chang-Ho;Choi Dong-Uk;Song Ki-Mo;Park Young-Hwan;You Young-Chan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.120-123
    • /
    • 2004
  • The lap splice lengths of deformed steel reinforcing bars and GFRP bars were experimentally compared using beam specimens. The purpose was to evaluate the length required of the GFRP bar to develop strength at least equivalent to the conventional steel reinforcing bar. The main test variable was the lap splice length: 10, 20, 30 $d_b$ for the deformed steel bars and 20, 30, 40 $d_b$ for the GFRP bars. Two different types of GFRP bars were tested: (1) one with spiral-type deformation and (2) plain round bars. Elastic modulus was about 1/5 of the steel bars while the tensile strength was about 690 MPa for the GFRP bars. Nominal diameter of the GFRP bars and steel bars was 12.7 and 13 mm, respectively. Normal strength concrete (28-day $f_{cu}$ = 30 MPa) was used. For the conventional steel bars (SD400 grade), strength over 400 MPa in tension was developed using the lap splice length of 20 and 30 $f_{cu}$. Only $87\%$ of the nominal yield strength was reached with the lap splice length of 10 $d_b$. For the spiral-type deformed GFRP bars with $40-d_b$ lap splice length, 440 MPa in tension was determined. The maximum tensile strength developed of the GFRP bars with smaller lap splice lengths decreased. The plain GFRP bar was not effective in developing the tensile strength even with $40-d_b$ lap splice length. Development of the cracks on beam surface was clearly visible for the beams reinforced with the GFRP bars. Mid-span deflections, however, were significantly smaller than the comparable beams with conventional steel bars indicating potential ductility problem.

  • PDF

Bond Failure Surface of Glass Fiber Reinforced Polymer Bars (GFRP 보강근의 부착파괴면)

  • Lee, Jung-Yoon;Yi, Chong-Ku;Kim, Tae-Young;Park, Ji-Sun;Park, Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.383-391
    • /
    • 2008
  • The effects of concrete strength on bond-slip behavior and the failure mechanisms of glass fiber reinforced polymer (GFRP) bar embedded in concrete under direct pullout were investigated in this study. Total of twenty seven specimens were prepared by placing two different types of GFRP bars and conventional steel rebar in 25 MPa, 55 MPa, and 75 MPa concrete and tested according to CSA S806-02. The test results showed that the bond strength of the GFRP rebars as well as the steel increased with the concrete strength. However, the increase in the bond strength with respect to the concrete strength was not as significant in the GFRP series as the steel, and it was attributed to the interlaminar failure mechanism observed in the GFRP test specimens.

Bond Properties of GFRP Rebar in Fiber Reinforced Concrete (Engineered Cementitious Composite) (섬유보강 콘크리트(ECC)와 GFRP 보강근의 부착 특성)

  • Choi, Yun-Cheul;Park, Keum-Sung;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.809-815
    • /
    • 2011
  • An experimental investigations on the bond-slip properties of the steel and Glass Fiber Reinforced Polymer(GFRP) bars in engineered cementitious composite (ECC) with Polyvinyl Alcohol (PVA) fibers are presented. Total of 8 beam specimens prepared according to the Rilem procedures with 2% of PVA and PE fiber volume percentage and steel and GFRP reinforcements significantly changed the failure mechanism and slightly improved bond strength. The main objective of the tests was to evaluate the load versus displacement and load versus slip behaviors and the bond strength for the following parameters: concrete type (normal and fiber concrete) and bar diameter (10 and 13 mm). The study results showed that ordinary concrete and ECC specimens showed similar behavior for steel reinforced specimen. However, GFRP reinforced specimen showed different behavior that the steel specimen. The code analytical results showed more accuracy compared to the experimental results as expected in conservative code provisions. Based on the obtained results, it is safe to conclude that the new parameters need to be adopted to ensure safe usage of ECC for construction applications.

Local Bond Stress-Slip Model of GFRP Rebars (GFRP 보강근의 부착응력-미끄럼 모델)

  • Cheong, Yeon-Geol;Yi, Chong-Ku;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.133-136
    • /
    • 2008
  • The cost of repairing the deterioration of concrete structures due to corrosion of the reinforcement steel has been the prominent figure in the maintenacne of the reinforced-concrete infrastructures. As an alternative material to steel reinforcement, the use of Glass Fiber Reinforced Polymer (GFRP) bar in concrete is being actively studied for the high resistance of chemical environment and high strength to weight ratio properties of GFRP. However, there remain various aspects of GFRP properties that still need to be studied before the standard design criteria can be established. One of the imminent issues is the bond between GFRP and concrete. In this study, the bond-behavior of GFRP bars in concrete is investigated via the pullout test with varying parameters: surface condition of GFRP bars and concrete compression strength. And the local bond-stress model of GFRP rabars with applying monotonc load was also derived from the present test.

  • PDF

Effect of Concrete Strength on the Bond Strength of Glass Fiber Reinforced Polymer Bars (콘크리트 강도가 GFRP 복합재료 보강근의 부착강도에 미치는 영향)

  • Kim, Tae-Young;Park, Ji-Sun;Lee, Jung-Yoon;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.189-192
    • /
    • 2005
  • Glass fiber reinforced polymer (GFRP) bars gain increasingly more attention as a reinforcing option for concrete because of their corrosion resistance and non-magnetism. GFRP reinforcement for concrete does not have the same shape as steel reinforcement. Therefore, the bond performance of FRP bars, unlike that of steel, is dependent on their design, manufacture and mechanical properties. This paper studied the effect of high strength concrete on the bond strength of GFRP bars. Twenty-nine specimens having different compressive strength of concrete were tested in order to examine the bond behavior of GFRP bars.

  • PDF

Flexural Behavior of Concrete Beams Reinforced with GFRP Bars (GFRP 보강근을 사용한 콘크리트 보의 휨파괴 거동)

  • Ha Sang Hoon;Kim Jung Kyu;Hwang Keum Sik;Eo Seok Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.339-342
    • /
    • 2005
  • This paper presents flexural test results of concrete beams reinforced with GFRP and conventional steel reinforcement for comparison. The beams were tested under static loading to investigate the effects of reinforcement ratio and compressive ,strength of concrete on cracking, deflection, ultimate capacity and mode of failure, This study attempts to establish a theoretical basis for the development of simple and rational design guideline. Test results show that ultimate capacity increases as the reinforcement ratio and concrete strength increase. The ultimate capacity increased up to $8\%-25\%$ by using high strength concrete. The deflection at maximum load of GFRP reinforced beams was about three times that of steel reinforced beams. For GFRP-reinforced beams, the ACI code 440 design method resulted in conservative flexural strength -estimates.

  • PDF

Non-destructive evaluation of steel and GFRP reinforced beams using AE and DIC techniques

  • Sharma, Gaurav;Sharma, Shruti;Sharma, Sandeep K.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.637-650
    • /
    • 2021
  • The paper presents an investigation of the widely varying mechanical performance and behaviour of steel and Glass Fibre Reinforced Polymer (GFRP) reinforced concrete beams using non-destructive techniques of Acoustic Emission (AE) and Digital Image Correlation (DIC) under four-point bending. Laboratory experiments are performed on both differently reinforced concrete beams with 0.33%, 0.52% and 1.11% of tension reinforcement against balanced section. The results show that the ultimate load-carrying capacity increases with an increase in tensile reinforcement in both cases. In addition to that, AE waveform parameters of amplitude and number of AE hits successfully correlates and picks up the divergent mechanism of cracking initiation and progression of failure in steel reinforced and GFRP reinforced concrete beams. AE activity is about 20-30% more in GFRP-RC beams as compared to steel-RC beams. It was primarily due to the lower modulus of elasticity of GFRP bars leading to much larger ductility and deflections as compared to steel-RC beams. Furthermore, AE XY event plots and longitudinal strain profiles using DIC gives an online and real-time visual display of progressive AE activity and strains respectively to efficaciously depict the crack evolution and their advancement in steel-RC and GFRP-RC beams which show a close matching with the micro-and macro-cracks visually observed in the actual beams at various stages of loading.

Behaviour of Lightweight Concrete Slab Reinforced with GFRP Bars under Concentrated Load (집중하중을 받는 GFRP 보강근 경량콘크리트 슬래브의 거동)

  • Son, Byung-Lak;Kim, Chung-Ho;Jang, Heui-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.57-66
    • /
    • 2015
  • This paper is a preliminary study to apply the lightweight concrete slabs reinforced with GFRP (glass fiber reinforced polymer) bars to the bridge deck slabs or some other concrete structures. So, some different behaviors between the conventional steel reinforced concrete slab and the lightweight concrete slab reinforced with GFRP bars were investigated. For this purpose, a number of slabs were constructed and then the three point bending test and numerical analysis for these slabs were performed. The flexural test results showed that the lightweight concrete slabs reinforced with GFRP bars were failed by the shear failure due to the over-reinforced design. The weight and failure load of the GFRP bar reinforced lightweight concrete slabs were 72% and 58% of the steel reinforced concrete slab with the same dimensions, respectively. Results of the numerical analysis for these slabs using a commercial program, midas FEA, showed that the load-deflection curve could be simulated well until the shear failure of the slabs, but the applied loads and the deflections continuously increased even beyond the shear failure loads.

Flexural Behavior of Concrete Beams Reinforced with GFRP Bars (GFRP 보강근을 사용한 콘크리트 보의 휨파괴 거동)

  • Eo, Seok-Hong;Ha, Sang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5318-5326
    • /
    • 2014
  • This paper presents the results of flexural test of concrete beams reinforced with GFRP and conventional steel reinforcement for comparison. The beams were tested under a static load to examine the effects of the reinforcement ratio and compressive strength of concrete on cracking, deflection, ultimate capacity, and modes of failure. The test results showed that the ultimate capacity of the GFRP-reinforced beams increased with increasing reinforcement ratio and concrete strength, showing a 41.3~51.6% increase compared to steel reinforced beams. The deflections at maximum loads of the GFRP reinforced beams were 4.1~6.3 times higher that of steel reinforced beams. The measured deflections of GFRP reinforced beams decreased approximately 31% compared to the theoretical predictions because the theoretical flexural stiffness was underestimated at the maximum loads. For the GFRP-reinforced beams, the ACI code 440 design method resulted in conservative flexural strength estimates.