• Title/Summary/Keyword: GFRP composite

Search Result 323, Processing Time 0.023 seconds

Evaluation and Application of T-Ray Nondestructive Characterization of FRP Composite Materials (FRP 복합재료의 T-Ray 비파괴특성 평가 및 적용)

  • Im, Kwang-Hee;Hsu, David K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.429-436
    • /
    • 2010
  • Recently, (terahertz ray) applications have emerged as one of the most promising new powerful nondestructive evaluation (NDE) techniques. In this study, a new T-ray time-domain spectroscopy system was utilized for detecting and evaluating layup effect and flaw in FRP composite laminates. Extensive experimental measurements in reflection and thru-transmission modes were made to map out the T-ray images. Especially this was demonstrated in thick GFRP laminates containing double saw slots. In carbon composites the penetration of terahertz waves is limited to some degree and the detection of flaws is strongly affected by the angle between the electric field(E-field) vector of the terahertz waves and the intervening fiber directions. The artificial defects investigated by terahertz waves were bonded foreign material, simulated disbond and delamination and mechanical impact damage. The effectiveness and limitations of terahertz radiation for the NDE of composites are discussed.

Experimental Study on Freezing-Thawing and Warm-Moisture Resistance of FRP Composites used in Strengthening RC Members (FRP 복합체의 동결융해 및 고온.고습 저항성에 관한 실험 연구)

  • Choi, Ki-Sun;You, Young-Chan;Lee, Han-Seung;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.345-348
    • /
    • 2006
  • FRP composites which are used in strengthening existing structure are usually adhered to the concrete surface, their performance are directly affected by environmental condition such as freezing-thawing and moisture. Accordingly, it is required to evaluate bond durability between FRP composite and concrete as well as FRP materials itself. The durability characteristics of FRP composite for freezing-thawing are evaluated in this study with the variables of concrete strength, type of FRP composite, freezing-thawing conditions and freezing-thawing cycle. In addition, material durability of GFRP sheet for high temperature/high humidity condition are examined in this experimental study.

  • PDF

An Experimental Study on the Free Vibration of the Cantilever Composite Rectangular Plates with Point Supports (점지지된 복합재료 외팔 사각판의 자유진동에 관한 실험적 연구)

  • 이영신;최명환;류충현
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.623-631
    • /
    • 1998
  • The free vibration analyses of the isotropic and composite(CFRP, GFRP) rectangular plates with point supports at the free edge and middle position are performed. The natural frequencies and nodal patterns of plates with point supports are experimentally determined by impact testing using an impact hammer. To compare and verify these experimental results, the finite element analysis is also carried out. The effect of the point support position, the number of point supports, and the anisotropic parameters on the natural frequencies and nodal patterns of cantilevered rectangular plates are investigated.

  • PDF

A Study on the Dielectric Properties and Fabrication method of G F R P Composite Insulating Materials (GFRP 복합절연재료의 제작방법과 유전특성에 관한 연구)

  • Sin, Jung-Hong;Kwak, Young-Soon;Hong, Young-Ki;Park, Jeong-Hoo
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.810-812
    • /
    • 1988
  • This paper is to investigate dielectric properties and new fabrication method of Glass-Cloth/Epoxy composite materials. According to the results of this paper, gelling point temperature is affected significantly on the ambient temperature. And Tan${\delta}$ characteristics of Glass-Colth/Epoxy composite materials is also affected significantly on the state of interior void of glass cloth and interface coupling between epoxy resin and glass cloth.

  • PDF

A Study on the characteristics of the Signals of AE according to Fracture mode of CFRP (Carbon Fiber Reinforced Plastic(CFRP)복합재의 파괴 거동에 따른 Acoustic Emission(AE)신호 특성에 관한 연구)

  • Lee, Kyung-Won;Kim, Jong-Hyun;Kim, Jae-Seong;Lee, Bo-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.4
    • /
    • pp.42-47
    • /
    • 2009
  • Recently, the wide range of the composite materials is used for the making airplanes, trains and automobiles body for the lightweight. Despite having complex structures, composite materials usually have well defined mechanical characteristics. However, composite materials are difficult to understand the fracture mechanism clearly by simple mechanical test. Nondestructive evaluation (NDE) combined with mechanical testing can play a more important role and especially Acoustic Emission Testing (AET) would become known to be a useful tool to assess damage and fracture behavior of composites. In this study The experiment was performed to acquire the acoustic emission signal during tensile test using unidirectional CFRP specimen and the data was analyzed the acoustic emission parameters with the waveform.

  • PDF

A Study on the Cutting Characteristics of the Glass Fiber Reinforced Plastics by Drill Tools (드릴에 의한 유리섬유강화플라스틱의 절삭특성에 관한 연구)

  • 박종남;조규재
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.15-21
    • /
    • 2004
  • Composite materials are widely used to make all kinds of machine parts, internal and structural materials of cars, aerospace industries, building structures, ship materials, sporting goods and others. It is worth the while to use composite materials as various substitutions when compared with others. But the use is limited in the field of the mechanical processing because of its difficulties in processing. Thus, it is proved that the surface is rough in and out of the hole processing the GFRP with HSS drill in the vertical machining center.

A Study on Electric Vehicle Composite Material Frame Battery Case Using Collision Analysis (충돌해석을 이용한 전기자동차 복합소재 프레임 배터리 케이스에 관한 연구)

  • Lee, Young-Jin;Lee, Sang-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.15-21
    • /
    • 2022
  • Collision analysis involving a vehicle frame that includes a battery and a battery case was performed using a carbon fiber composite material (CFRP) and a glass fiber-reinforced plastic (GFRP), which are lightweight materials. Three types of collisions were analyzed: frontal collisions, partial frontal collisions, and side collisions. The maximum stress and deformation levels were measured for each case. To evaluate the stability of ignition and explosion potential of the battery, the maximum stress of the frame was measured before measuring the direct stress to confirm whether the collision energy was sufficiently absorbed. The deformation level of the battery case was measured to confirm whether the battery case affects the battery directly.

Flexural Reinforcement of RC Beams with Pultruded Carbon and Glass Fiber Strip (탄소 및 유리섬유 풀트루션 스트립을 이용한 RC보의 휨보강 연구)

  • 정원용;이성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.689-692
    • /
    • 1999
  • In recent years, FRP plates have been studied for flexural reinforcement of RC structures due to easy installation and good quality control. This study presents experimental results for the effectiveness of flexural reinforcement of the RC beams using thin CFRP and GFRP stripe made by the pultrusion process. For the selected FRP strips of various thicknesses and widths, it was demonstrated that both flexural strength and ductility were considerably increased with relatively easy installation when compared to the other methods used for the composite reinforcement.

  • PDF

Frequency Analysis in Orthogonal Cutting of Glass Fiber Reinforced Composites

  • Park, Gi-Heung
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.06a
    • /
    • pp.52-57
    • /
    • 2000
  • This paper discusses frequency analysis based on frequency spectrum in orthogonal cutting of fiber-matrix composite materials. A glass reinforced polyester (GFRP) was used as workpiece. Analysis method employs a force sensor and the signals from the sensor are processed using a fast Fourier transform (FFT) technique. The experimental correlation between the different chip formation mechanisms and model coefficients are then established. (omitted)

  • PDF

Evaluation of the Change in Adhesion Strength of GFRP and CFRP with Carbon Nanotube Contents in Epoxy Adhesive with Moisture Change during Curing (에폭시 접착제의 탄소나노튜브 함량과 경화시 습도 변화에 따른 GFRP 및 CFRP의 접착강도 변화 평가)

  • Park, Hee-Woong;Kim, Jong-Hyun;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • As the wind blades become larger, they tend to be made by mixing glass fiber and carbon fiber, and it is important to increase the properties of the adhesive which adheres the two materials. The physical properties of the adhesive vary depending on the content of the additive and curing conditions. In this study, the change in adhesion strength with the difference between the CNT (Carbon Nanotube) content of the epoxy adhesive and the humidity during curing was evaluated. GFRP and CFRP specimens were prepared and adhered using an epoxy adhesive, and to examine changes in characteristics with carbon nanotube contents and with the humidity during curing of the epoxy adhesive, adhesion strength was evaluated by dividing the difference between carbon nanotube content and humidity. To find out the change with the CNT contents, the intelaminar shear strength (ILSS) test was performed by dividing the contents of the CNT into 0, 0.1, 0.3, 0.5, and 1 wt%, and to confirm the change with the humidity conditions, the adhesive was cured by dividing the humidity by 20, 50, and 80%. From the result of the experiment, the adhesive force decreased when the content was excessively large, although the adhesive property was enhanced by adding CNT to the epoxy adhesive. In addition, it was confirmed that the adhesion characteristics were not changed as the humidity increased.