• Title/Summary/Keyword: GEO Satellite

Search Result 429, Processing Time 0.023 seconds

System Design of COMS(Communication, Ocean and Meteorological Satellite) Propulsion System (통신해양기상위성 추진시스템 시스템설계)

  • Park Eung-Sik;Han Cho-Young;Chae Jong-Won;Bucknell S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.426-430
    • /
    • 2005
  • The COMS(Communication, Ocean and Meteorological Satellite) is the first developed three-axis stabilization multi-function satellite on geostationary earth orbit(GEO) in korea, presently scheduled to be launched in 2008. The COMS propulsion system provides the thrust and torque required for the insertion into GEO, attitude and orbit control/adjustment of spacecraft. In this paper, system design of propulsion system, basic functions and design requirement of components are described.

  • PDF

A Study on the Satellite Orbit Design for KPS Requirements

  • Shin, Miri;Lim, Deok Won;Chun, Sebum;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.215-223
    • /
    • 2019
  • This paper analyzes navigation performances of the Korean Positioning System (KPS) constellation with respect to the orbit parameters which fulfills the specification requirements. Specifically, the satellite configuration and navigation requirements of KPS are explained, and the daily mean horizontal dilution of precision (HDOP) and satellite visibility on KPS coverage are analyzed to confirm the adequate orbit parameters. However, due to orbital slot saturation, geostationary-orbit (GEO) satellites may not be allocated in the original orbit as specified in the KPS requirements. Therefore, in a spanned window of 4 degrees from the reference longitude the navigation performance of each GEO satellite orbit is investigated.

Spatial relationship operations of the Satellite image for the Remote sensing based on an Object oriented data model (객체지향 데이터 모델에 기반 원격탐사를 위한 위성영상의 공간 관계 연산)

  • Shin, Un-Sseok;Lee, Jae-Bong;Kim, Hyung-Moo;Lee, Hong-Ro
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.251-256
    • /
    • 2004
  • This paper will show examples and methods of spatial relationship operations that extract spatial information from satellite images. Geographical information system phenomena of complex and variant real world can abstract and implement simple features. The abstract features classify geo_objects and geo_field. The geo_object and the geo_field can represent vector and raster respectively. The raster based satellite image can use remote sensing applications. This paper needs topology operations and geometric operations for extracting the remote sensing. The spatial information transforms the raster based image to the vector based object, and extract from the spatial information. The extracted information will contribute on the application of the remote sensing satellite images.

  • PDF

Accuracy Assessment of IGSO and GEO of BDS and QZSS Broadcast Ephemeris using MGEX Products

  • Son, Eunseong;Choi, Heonho;Joo, Jungmin;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.347-356
    • /
    • 2020
  • In this study, Inclined Geosynchronous Orbit (IGSO) and Geostationary Orbit (GEO) of BeiDou System (BDS) and Quasi Zenith Satellite System (QZSS) satellites positions and clock errors calculated by broadcast ephemeris and compared with Multi-GNSS Experiment (MGEX) products provided by five Analysis Centers (ACs). Root Mean Square Errors (RMSE) calculated for satellite position error. The IGSO results showed that 1.82 m, 0.91 m, 1.28 m in BDS and 1.34 m 0.36 m 0.49 m in QZSS and the GEO results showed that 2.85 m, 6.34 m, 6.42 m in BDS and 0.47 m, 4.79 m, 5.82 m in QZSS in the direction of radial, along-track and cross-track respectively. RMS calculated for satellite clock error. The IGSO result showed that 2.08 ns and 1.24 ns and the GEO result showed that 1.28 ns and 1.12 ns in BDS and QZSS respectively.

Optimization of a radiator for a MPFL system in a GEO satellite

  • Afshari, Behzad Mohasel;Abedi, Mohsen;Shahryari, Mehran
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.701-709
    • /
    • 2017
  • One of the components that used in the satellite thermal control subsystem is the Mechanically Pumped Fluid Loop (MPFL) system; this system mostly used in geosynchronous orbit (GEO) satellites, and can transfer heat from a hot point to a cold point using the fluid which circulated in a closed loop. Heat radiates to the deep space at the cold plate to cool down the fluid temperature. In this research, the radiative heatexchanger (RHX) for a MPFL system is optimized. The genetic algorithm has been used for minimizing the total mass and pressure drop by considering a constant transferred heat rate at the heat exchanger. The optimization has been done in two cases. In case I, two parameters are considered as a goal function, so optimization is performed using NSGA-II method. Results of optimization are shown in the pareto diagram. In case II, the diameter of pipe is considered constant, so the optimized value for distances of the parallel pipes is obtained by using the genetic algorithm, in which the system has the least total mass. Results show that in the RHX, by increasing the pipe diameter, pressure drop decreases and total mass increases. Also by considering a constant value for pipe diameter, an optimum distance between pipes and pipe length are obtained in which the system has a minimum mass.

Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations I: COMS simulation case

  • Son, Ju Young;Jo, Jung Hyun;Choi, Jin
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.221-228
    • /
    • 2015
  • To protect and manage the Korean space assets including satellites, it is important to have precise positions and orbit information of each space objects. While Korea currently lacks optical observatories dedicated to satellite tracking, the Korea Astronomy and Space Science Institute (KASI) is planning to establish an optical observatory for the active generation of space information. However, due to geopolitical reasons, it is difficult to acquire an adequately sufficient number of optical satellite observatories in Korea. Against this backdrop, this study examined the possible locations for such observatories, and performed simulations to determine the differences in precision of optical orbit estimation results in relation to the relative baseline distance between observatories. To simulate more realistic conditions of optical observation, white noise was introduced to generate observation data, which was then used to investigate the effects of baseline distance between optical observatories and the simulated white noise. We generated the optical observations with white noise to simulate the actual observation, estimated the orbits with several combinations of observation data from the observatories of various baseline differences, and compared the estimated orbits to check the improvement of precision. As a result, the effect of the baseline distance in combined optical GEO satellite observation is obvious but small compared to the observation resolution limit of optical GEO observation.

A Study on Technique for Synchronization Error Calibration of Standard frequency & Time Signal Dissemination System via KoreaSAT (무궁화 위성을 이용한 표준 시각/주파수 전송 시스템의 동기오차 보정 기술)

  • 이기훈;윤재철;신관호;진봉철;서종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11B
    • /
    • pp.1573-1582
    • /
    • 2001
  • In this paper we analyze the main resources of error in GEO-satellite STFS(Standard Time & frequency Signal) dissemination system. For the case of small countries like Korea, we compare GEO-satellite STFS dissemination technique with the terrestrial network or with the GPS using LEO-satellites, and analyze its advantages over the forementioned systems. We also introduce the GEO-satellite STFS dissemination systems which are being developed or in service. Particularly, we put much efforts to develop the synchronization error calibration technique required to provide a highly accurate STFS service via KoreaSAT. We then propose the differential mode technique as the most effective and efficient calibration technique for mitigating errors in GEO-satellite STFS dissemination systems, and analyze its performance via computer simulation. We also analyze the relation between time accuracy and frequency accuracy. Our experimental results show that the time accuracy is better than 100 ns and the frequency accuracy is better than 10-13 over 7 days all around Korea peninsula. Finally, we propose methods to improve the performance of STFS dissemination system, and demonstrate that the proposed methods result in more accurate synchronization of GEO-satellite STFS.

  • PDF

Performance Analysis of Call Admission Control Scheme with Bandwidth Borrowing and Bandwidth Reservation in GEO based Integrated Satellite Network (GEO 기반 위성 네트워크에서의 대역폭 빌림 방법과 대역폭 예약 방법을 이용한 호 수락 제어 성능 분석)

  • Hong, Tae-Cheol;Gang, Gun-Seok;An, Do-Seop;Lee, Ho-Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.1
    • /
    • pp.12-19
    • /
    • 2006
  • In this paper, we propose the bandwidth borrowing scheme which improves the performance of the cal admission control of the integrated GEO satellite networks. In general, target transmission rates of communications and streaming services are fixed, but data services do not have the target transmission rates. Therefore, we can control the transmission rates for data services flexibly according to the system loading situation. When the available bandwidth of the system is insufficient, the bandwidth borrowing scheme gives the bandwidth to request real time services by the transmission rates control of data services through packet scheduler. We make the queueing model for our system model and demonstrate the results through simulations. The simulation results show that there is a 8.7-35.2 dB gain at the total blocking probability according to the use of bandwidth borrowing scheme.

  • PDF

Ionospheric TEC Monitoring over Jeju Island using the Chinese BeiDou Satellite Navigation System

  • Choi, Byung-Kyu;Lee, Woo Kyoung;Sohn, Dong-Hyo;Yoo, Sung-Moon;Roh, Kyoung-Min;Joo, Jung-Min;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • The Chinese BeiDou Satellite Navigation System consists of three kinds of constellations: the geostationary Earth orbit (GEO), the inclined geosynchronous satellite orbit (IGSO), and the medium Earth orbit (MEO). The BeiDou has expanded its service coverage from regional to global. Recently, the BeiDou has been widely used in ionospheric total electron content (TEC) research. In this study, we analyzed the BeiDou signals for ionospheric TEC monitoring over Jeju Island in South Korea. The BeiDou GEO TEC showed a clear pattern of diurnal variations. In addition, we compared the TEC values from the BeiDou GEO, the BeiDou IGSO, GPS, and International GNSS Service (IGS) Global Ionosphere Maps (GIM). There was a difference of about 5 TEC units between the BeiDou GEO and the IGS GIM. This may be due to the altitude difference between the different navigation satellites.