• Title/Summary/Keyword: GEE approach

Search Result 69, Processing Time 0.02 seconds

Design and Weighting Effects in Small Firm Server in Korea

  • Lee, Keejae;Lepkowski, James M.
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.3
    • /
    • pp.775-786
    • /
    • 2002
  • In this paper, we conducted an empirical study to investigate the design and weighting effects on descriptive and analytic statistics. The design and weighting effects were calculated for estimates produced from the 1998 small firm survey data. We considered the design and weighting effects on coefficients estimates of regression model using the design-based approach and the GEE approach.

A step-by-step guide to Generalized Estimating Equations using SPSS in dental research (치의학 분야에서 SPSS를 이용한 일반화 추정방정식의 단계별 안내)

  • Lim, Hoi-Jeong;Park, Su-Hyeon
    • The Journal of the Korean dental association
    • /
    • v.54 no.11
    • /
    • pp.850-864
    • /
    • 2016
  • The Generalized Estimating Equations (GEE) approach is a widely used statistical method for analyzing longitudinal data and clustered data in clinical studies. In dentistry, due to multiple outcomes obtained from one patient, the outcomes produced from an individual patient are correlated with one another. This study focused on the basic ideas of GEE and introduced the types of covariance matrix and working correlation matrix. The quasi-likelihood information criterion (QIC) and quasi-likelihood information criterion approximation ($QIC_u$) were used to select the best working correlation matrix and the best fitting model for the correlated outcomes. The purpose of this study is to show a detailed process for the GEE analysis using SPSS software along with an orthodontic miniscrew example, and to help understand how to use GEE analysis in dental research.

  • PDF

Comparison of GEE Estimation Methods for Repeated Binary Data with Time-Varying Covariates on Different Missing Mechanisms (시간-종속적 공변량이 포함된 이분형 반복측정자료의 GEE를 이용한 분석에서 결측 체계에 따른 회귀계수 추정방법 비교)

  • Park, Boram;Jung, Inkyung
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.5
    • /
    • pp.697-712
    • /
    • 2013
  • When analyzing repeated binary data, the generalized estimating equations(GEE) approach produces consistent estimates for regression parameters even if an incorrect working correlation matrix is used. However, time-varying covariates experience larger changes in coefficients than time-invariant covariates across various working correlation structures for finite samples. In addition, the GEE approach may give biased estimates under missing at random(MAR). Weighted estimating equations and multiple imputation methods have been proposed to reduce biases in parameter estimates under MAR. This article studies if the two methods produce robust estimates across various working correlation structures for longitudinal binary data with time-varying covariates under different missing mechanisms. Through simulation, we observe that time-varying covariates have greater differences in parameter estimates across different working correlation structures than time-invariant covariates. The multiple imputation method produces more robust estimates under any working correlation structure and smaller biases compared to the other two methods.

Property of regression estimators in GEE models for ordinal responses

  • Lee, Hyun-Yung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.1
    • /
    • pp.209-218
    • /
    • 2012
  • The method of generalized estimating equations (GEEs) provides consistent esti- mates of the regression parameters in a marginal regression model for longitudinal data, even when the working correlation model is misspecified (Liang and Zeger, 1986). In this paper we compare the estimators of parameters in GEE approach. We consider two aspects: coverage probabilites and efficiency. We adopted to ordinal responses th results derived from binary outcomes.

Analysis of Repeated Measured VAS in a Clinical Trial for Evaluating a New NSAID with GEE Method (퇴행성 관절염 환자를 대상으로 새로운 진통제 평가를 위한 임상시험자료의 GEE 분석)

  • Lim, Hoi-Jeong;Kim, Yoon-I;Jung, Young-Bok;Seong, Sang-Cheol;Ahn, Jin-Hwan;Roh, Kwon-Jae;Kim, Jung-Man;Park, Byung-Joo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.37 no.4
    • /
    • pp.381-389
    • /
    • 2004
  • Objective : To compare the efficacy between SKI306X and Diclofenac by using generalized estimating equations (GEE) methodology in the analysis of correlated bivariate binary outcome data in Osteoarthritis (OA) diseases. Methods : A randomized, double-blind, active comparator-controlled, non-inferiority clinical trial was conducted at 5 institutions in Korea with the random assignment of 248 patients aged 35 to 75 years old with OA of the knee and clinical evidence of OA. Patients were enrolled in this study if they had at least moderate pain in the affected knee joint and a score larger than 35mm as assessed by VAS (Visual Analog Scale). The main exposure variable was treatment (SKI 306X vs. Diclofenac) and other covariates were age, sex, BMI, baseline VAS, center, operation history (Yes/No), NSAIDS (Y/N), acupuncture (Y/N), herbal medicine (Y/N), past history of musculoskeletal disease (Y/N), and previous therapy related with OA (Y/N). The main study outcome was the change of VAS pain scores from baseline to the 2nd and 4th weeks after treatment. Pain scores were obtained as baseline, 2nd and 4th weeks after treatment. We applied GEE approach with empirical covariance matrix and independent(or exchangeable) working correlation matrix to evaluate the relation of several risk factors to the change of VAS pain scores with correlated binary bivariate outcomes. Results : While baseline VAS, age, and acupuncture variables had protective effects for reducing the OA pain, its treatment (Joins/Diclofenac) was not statistically significant through GEE methodology (ITT:aOR=1.37, 95% CI=(0.8200, 2.26), PP:aOR=1.47, 95% CI=(0.73, 2.95)). The goodness-of-fit statistic for GEE (6.55, p=0.68) was computed to assess the adequacy of the fitted final model. Conclusions : Both ANCOVA and GEE methods yielded non statistical significance in the evaluation of non-inferiority of the efficacy between SKI306X and Diclofenac. While VAS outcome for each visit was applied in GEE, only VAS outcome for the fourth visit was applied in ANCOVA. So the GEE methodology is more accurate for the analysis of correlated outcomes.

ELCIC: An R package for model selection using the empirical-likelihood based information criterion

  • Chixiang Chen;Biyi Shen;Ming Wang
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.4
    • /
    • pp.355-368
    • /
    • 2023
  • This article introduces the R package ELCIC (https://cran.r-project.org/web/packages/ELCIC/index.html), which provides an empirical likelihood-based information criterion (ELCIC) for model selection that includes, but is not limited to, variable selection. The empirical likelihood is a semi-parametric approach to draw statistical inference that does not require distribution assumptions for data generation. Therefore, ELCIC is more robust and versatile in the context of model selection compared to the currently existing information criteria. This paper illustrates several applications of ELCIC, including its use in generalized linear models, generalized estimating equations (GEE) for longitudinal data, and weighted GEE (WGEE) for missing longitudinal data under the mechanisms of missing at random and dropout.

Regression analysis of interval censored competing risk data using a pseudo-value approach

  • Kim, Sooyeon;Kim, Yang-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.6
    • /
    • pp.555-562
    • /
    • 2016
  • Interval censored data often occur in an observational study where the subject is followed periodically. Instead of observing an exact failure time, two inspection times that include it are available. There are several methods to analyze interval censored failure time data (Sun, 2006). However, in the presence of competing risks, few methods have been suggested to estimate covariate effect on interval censored competing risk data. A sub-distribution hazard model is a commonly used regression model because it has one-to-one correspondence with a cumulative incidence function. Alternatively, Klein and Andersen (2005) proposed a pseudo-value approach that directly uses the cumulative incidence function. In this paper, we consider an extension of the pseudo-value approach into the interval censored data to estimate regression coefficients. The pseudo-values generated from the estimated cumulative incidence function then become response variables in a generalized estimating equation. Simulation studies show that the suggested method performs well in several situations and an HIV-AIDS cohort study is analyzed as a real data example.

Combinatorial Approach Using Caenorhabditis elegans and Mammalian Systems for Aging Research

  • Lee, Gee-Yoon;Sohn, Jooyeon;Lee, Seung-Jae V.
    • Molecules and Cells
    • /
    • v.44 no.7
    • /
    • pp.425-432
    • /
    • 2021
  • Aging is associated with functional and structural declines in organisms over time. Organisms as diverse as the nematode Caenorhabditis elegans and mammals share signaling pathways that regulate aging and lifespan. In this review, we discuss recent combinatorial approach to aging research employing C. elegans and mammalian systems that have contributed to our understanding of evolutionarily conserved aging-regulating pathways. The topics covered here include insulin/IGF-1, mechanistic target of rapamycin (mTOR), and sirtuin signaling pathways; dietary restriction; autophagy; mitochondria; and the nervous system. A combinatorial approach employing high-throughput, rapid C. elegans systems, and human model mammalian systems is likely to continue providing mechanistic insights into aging biology and will help develop therapeutics against age-associated disorders.

An Automatic Approach for Geometric Correction of Landsat Images

  • Hwang, Tae-Hyun;Chae, Gee-Ju;Park, Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.542-542
    • /
    • 2002
  • Geometric correction is a critical step to remove geometric distortions in satellite images. For correct geometric correction, Ground Control Points (GCPs) have to be chosen carefully to guarantee the quality of corrected satellite images. In this paper, we present an automatic approach for geometric correction by constructing GCP Chip database (GCP DB) that is a collection of pieces of images with geometric information. The GCP DB is constructed by exploiting Landsat's nadir-viewing property and the constructed GCP DB is combined with a simple block matching algorithm for efficient GCP matching. This approach reduces time and energy for tedious manual geometric correction and promotes usage of Landsat images.

  • PDF