• 제목/요약/키워드: GEAR

검색결과 2,760건 처리시간 0.034초

대형 유성기어박스의 정역회전 내구성시험장치 개발에 관한 연구 (Development of Normal-Opposite Rotational Durability Test Equipment for Large Sized Planetary Gear Box)

  • 이용범;김광민
    • 한국생산제조학회지
    • /
    • 제21권2호
    • /
    • pp.305-310
    • /
    • 2012
  • Planetary gear box is a power transmitter having very high gear ratio in compact volume. The planetary step-down gear box converts high speed and low torque into low speed and high torque, which is widely used in constructional and industrial machinery field. And, the planetary step-up gear box does vice versa working, which is used as main gear box of large sized wind mill system. The large sized planetary gear box must be performed the normal-opposite rotation test as a its durability test for achieving the reliability. The large sized planetary gear box is composed by triple gear trains of sun gear, carrier, and ring gear. If input power is supplied into one of them and the other is fixed, and then another becomes the output part. In this paper, we designed a new test equipment which can do rapid normal and opposite rotational change with only small displacement by supplying test power using the above rotation (driving) characteristics and hydraulic cylinder and link, and also compared and analyzed with existing method through various experiments.

장구형 웜기어를 이용한 감속기 설계 (Design of a Reduction Gear using Double-Enveloping Worm Gear)

  • 김태우;황영국;이춘만
    • 한국정밀공학회지
    • /
    • 제30권8호
    • /
    • pp.785-789
    • /
    • 2013
  • Worm gear sets may be either single- or double-enveloping. In a single-enveloping set, the worm wheel is cut into a concave surface, thus partially enclosing the worm when meshed. The double-enveloping worm gear is similar to the single-enveloping gear; however, the worm envelopes the worm gear. Thus both are throated. The double-enveloping worm gear has more of the tooth surface in contact than the single-enveloping worm gear. The larger contact area increases the load-carrying capacity. For this reason, double-enveloping worm gearing is widely applied in heavy-duty machinery, for applications including construction and metallurgy. In this paper, we designed a compact reduction gear that is highly efficient using double-enveloping worm gears. We calculated the bearing load in the worm gearing to select the bearing and the housing surface area according to the recommended values from AGMA(American Gear Manufacturers Association). The finite element method was used to assess the structural integrity.

A Strength Analysis of Gear Train for Hydro-Mechanical Continuously Variable Transmission

  • Bae, Myung Ho;Bae, Tae Yeol;Yoo, Young Rak
    • International Journal of Advanced Culture Technology
    • /
    • 제6권3호
    • /
    • pp.163-172
    • /
    • 2018
  • The power train of hydro-mechanical continuously variable transmission(HMCVT) for the middle class forklift makes use of an hydro-static unit, hydraulic multi-wet disc brake & clutches and complex helical & planetary gears. The complex helical & planetary gears are a very important part of the transmission because of strength problems. The helical & planetary gears belong to the very important part of the HMCVT's power train where strength problems are the main concerns including the gear bending stress, the gear compressive stress and scoring failures. The present study, calculates specifications of the complex helical & planetary gear train and analyzes the gear bending and compressive stresses of the gears. It is necessary to analyze gear bending and compressive stresses confidently for an optimal design of the complex helical & planetary gears in respect of cost and reliability. This paper not only analyzes actual gear bending and compressive stresses of complex helical & planetary gears using Lewes & Hertz equation, but also verifies the calculated specifications of the complex helical & planetary gears by evaluating the results with the data of allowable bending and compressive stress from the Stress - No. of cycles curves of gears. In addition, this paper explains actual gear scoring and evaluates the possibility of scoring failure of complex helical & planetary gear train of hydro-mechanical continuously variable transmission for the forklift.

콘크리트 믹서 트럭용 믹서 감속기의 차동 유성 기어 트레인에 대한 위험속도 해석 (The Critical Speed Analysis of the Differential Planetary Gear Train of a Concrete Mixer Truck Mixer Reducer)

  • 배명호;배태열;김당주
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권1호
    • /
    • pp.1-7
    • /
    • 2017
  • The power train of a concrete truck mixer reducer includes differential planetary gears to get a large reduction ratio for operating the mixer drum in a compact structure. These differential planetary gears are a very important part of the mixer reducer where strength problems are the main concern. Gear bending stress, gear compressive stress and scoring failure are the main concerns. Many failures in differential planetary gears are due to the insufficient gear strength and resonance problems caused by major excitation forces such as gear mating failure in the transmission. In the present study, where the excitation frequencies are the gear tooth passing frequencies of the mating gears, a Campbell diagram is used to calculate differential planetary gear critical speeds. Mode shapes and natural frequencies of the differential planetary gears are calculated by CATIA V5. These are used to predict gear resonance failures by comparing the working speed range with the critical speeds due to the gear transmission errors of the differential planetary gears.

자동차 Differential gear case 불평형 교정을 위한 balancing 장치설계 및 측정에 관한 연구 (A Study on the Design and Measurement of a Balancing Device for Unbalance Correction of Differential Gear Case in Automobile)

  • 장태환;권진욱;엄지현;김정아;김태규
    • 열처리공학회지
    • /
    • 제33권6호
    • /
    • pp.303-309
    • /
    • 2020
  • A vehicle's differential gear is a device designed to allow the vehicle's outer wheels to turn faster than the inner wheels when turning on a curve. The differential gear case is the main component of the differential gear system, which is composed of ring gear, pinion gear and side gear, and is fastened by pinion shaft pins. The differential gear case rotates when the vehicle is running, so balancing calibration is very important. In this study, a balancing machine that can diagnose and correct the differential gear case and mass imbalance of various rotating bodies was designed. The differential gear case was rotated at high speed to accurately diagnose the location and value of the unbalanced mass, and it was designed to be balanced and corrected by removing the unbalanced mass by drilling. After calibration, it was confirmed that the unbalanced value of all the measured samples was reduced to less than 180g.mm, and the unbalance reduction ratio was improved to 60~70%.

엔진용 백래쉬 방지 기어의 Fp Z/8에 관한 연구 (A Study on Fp Z/8 of Anti-Backlash Gear in an Engine)

  • 종흥;려건화;로호;주서;곽검우;개랑;진진;장기;류성기
    • 한국기계가공학회지
    • /
    • 제19권10호
    • /
    • pp.24-30
    • /
    • 2020
  • The high speed of an engine balance box may cause significant additional gear noise. Gear accuracy is the most useful key to reduce gear noise, but the small tooth width and thin-walled anti-backlash gear introduce challenges to the manufacturing process. In order to reduce the gear noise caused by gear pitch error, this paper investigates the correlation between influencing factors and gear pitch error by analyzing the processing technology, tooling fixture, and equipment accuracy. By improving the process and optimizing the gear design, the gear machining accuracy was improved and the processing cost was saved.

Influence of Grease Consistency on the Wear of Gear Surfaces

  • Li, Chen-Xiao;Park, Haneum;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • 제38권3호
    • /
    • pp.115-119
    • /
    • 2022
  • This paper selected three kinds of grease with the same type but different consistency for the experiment. The purpose of the experiment is tested the effect of different consistency of grease on the wear of the gear surface. Different torque test groups were selected in the test, and the lubrication effect of different greases was tested in the test groups with the same torque. After each set of tests, the wear of the gear surfaces was observed and recorded. The data recorded in the experiment included the area of the wear area on the gear surface, the type of wear and the volume of wear. After the test, the gear surface roughness was measured. By calculating the wear volume, the effects of different concentrations of grease on the gear surface wear were compared. The experimental results show that under different stress conditions, the consistency of the grease has a great influence on the lubricating effect of the gear surface and the gear wear. Under the condition with low speed and high torque, different grease consistency affect the gear surface wear, the high consistency grease can reduce the wear of the gear surface, so that the gear can get better lubrication effect during the work.

장갑차용 트랜스미션의 유성기어 설계 및 내구 강도 분석을 위한 유성기어 감속기 설계 소프트웨어의 개발 (Developing Planetary Gear Reduction Design Software for the Planetary Gear Design and Durability Strength Analysis of Armored Vehicle's Transmission)

  • 강신현;박성호;조연상
    • Tribology and Lubricants
    • /
    • 제39권5호
    • /
    • pp.173-182
    • /
    • 2023
  • The composite planetary gear reducer, a power transmission component of armored vehicles, operates at a high torque and is used in severe environments such as mountain, gravel or unpaved roads. Therefore, they must be designed and manufactured to have high durability. To design such a planetary gear reducer, there are numerous specifications to validate, such as selecting the module and the number of teeth of each gear satisfied the requirements, and calculating gear specifications and durability strength. Because planetary gears constitute a combination of several gears, there are many restrictions and interferences in selecting the number of teeth and addendum modification coefficients, and designing the tooth shape. Developing an auto design program is necessary to design various planetary gears more conveniently and quickly. In this study, a planetary gear reducer design software, widely used in various machines and armored vehicles, was developed. This design software can automatically select the number of teeth and modules of the gears, calculate specifications and quickly evaluate its fatigue durability strength and scoring failure according to the planetary gear reducer design theory.

Design Improvement of Mechanical Transmission for Tracked Small Agricultural Transporters through Gear Strength Analysis

  • Kim, Hong-Gon;Jo, Yeon-Ju;Kim, Chul-Soo;Han, Yong-Ho;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • 제41권1호
    • /
    • pp.1-11
    • /
    • 2016
  • Purpose: The gear strength of a new mechanical transmission designed to increase the loading weight of small 4.8 kW tracked agricultural transporters was analyzed. Design improvements to increase the gear strength and reduce the gear weight were proposed after examining the parameters. Methods: Sixteen operators from three regions were surveyed to obtain the usage profile of small 4.8 kW transporters. Gear strength was evaluated by calculating contact stress and tooth root stress using commercial software following ISO 6336. Results: From the strength calculation for each gear pair, contact stress smaller than tooth root stresses were produced in all gear pairs. The safety factors in most cases exceeded 1.0, except in the case of gear pair II in group II. The design life of the transporter using gear pair II in group II was 42% under harsh conditions-thus, this design life needs improvement. A robust design was proposed by examining the relevant parameters (face width and profile shift coefficient) to increase the design life of the transporter. In addition, a lightweight design for gear pair I in group II that was considered overdesigned was proposed by examining the face width to reduce the weight of the drive gear by 42% and that of the driven gear by 30%. Conclusions: The Safety factor for the design life was examined through a gear strength analysis. After examining the relevant parameters, conditions for strength improvement were proposed to increase design life or adjust overdesigned gear. However, load conditions differ depending on the working conditions or user's preferences; therefore, it is necessary to conduct further studies in various regions.