• Title/Summary/Keyword: GDSL motif

Search Result 2, Processing Time 0.017 seconds

Biochemical Characterization of a GDSL-Motif Esterase from Bacillus sp. K91 with a New Putative Catalytic Mechanism

  • Ding, Junmei;Yu, Tingting;Liang, Lianming;Xie, Zhenrong;Yang, Yunjuan;Zhou, Junpei;Xu, Bo;Li, Junjun;Huang, Zunxi
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1551-1558
    • /
    • 2014
  • The esterase gene Est8 from the thermophilic bacterium Bacillus sp. K91 was cloned and expressed in Escherichia coli. The monomeric enzyme exhibited a theoretical molecular mass of 24.5 kDa and an optimal activity around $50^{\circ}C$ at pH 9.0. A model of Est8 was constructed using a hypothetical YxiM precursor structure (2O14_A) from Bacillus subtilis as template. The structure showed an ${\alpha}/{\beta}$-hydrolase fold and indicated the presence of a typical catalytic triad consisting of Ser-11, Asp-182, and His-185, which were investigated by site-directed replacements coupled with kinetic characterization. Asp-182 and His-185 residues were more critical than the Ser-11 residue in the catalytic activity of Est8. A comparison of the amino acid sequence showed that Est8 could be grouped into the GDSL family and further classified as an SGNH hydrolase. Est8 is a new member of the SGNH hydrolase subfamily and may employ a different catalytic mechanism.

Characterization of a Salicylic Acid- and Pathogen-induced Lipase-like Gene in Chinese Cabbage

  • Lee, Kyung-Ah;Cho, Tae-Ju
    • BMB Reports
    • /
    • v.36 no.5
    • /
    • pp.433-441
    • /
    • 2003
  • A cDNA clone for a salicylic acid-induced gene in Chinese cabbage (Brassica rapa subsp. pekinensis) was isolated and characterized. The cabbage gene, designated Br-sil1 (for $\underline{B}$rassica $\underline{r}$apa $\underline{s}$alicylate-$\underline{i}$nduced $\underline{l}$lipase-like 1 gene), encodes a putative lipase that has the family II lipase motif GDSxxDxG around the active site serine. A database search showed that plant genomes have a large number of genes that contain the family II lipase motif. The lipase-like proteins include a myrosinase-associated protein, an anther-specific proline-rich protein APG, a pollen coat protein EXL, and an early nodule-specific protein. The Br-sil1 gene is strongly induced by salicylic acid and a non-host pathogen, Pseudomonas syringae pv. tomato, that elicits a hypersensitive response in Chinese cabbage. Treatment of the cabbage leaves with BTH, methyl jasmonate, or ethephon showed that the Br-sil1 gene expression is induced by BTH, but not by methyl jasmonate or ethylene. This indicates that the cabbage gene is activated via a salicylic acid-dependent signaling pathway. An examination of the tissue-specific expression revealed that the induction of the Br-sil1 gene expression by BTH occurs in leaves and stems, but not in roots and flowers. Without the BTH treatment, however, the Br-sil1 gene is not expressed in any of the tissues that were examined.