• 제목/요약/키워드: GDI(Gasoline Direct Injection Engine)

검색결과 66건 처리시간 0.022초

직접분사식 가솔린 엔진의 연소제어인자에 따른 희박연소 특성 연구 (A Study on the Lean Combustion Characteristics with Variation of Combustion Parameter in a Gasoline Direct Injection Engine)

  • 박철웅;오진우;김홍석
    • 한국자동차공학회논문집
    • /
    • 제20권4호
    • /
    • pp.39-45
    • /
    • 2012
  • Today gasoline engines for vehicular application are not only faced with stringent emission regulation but also with increasing requirements to better fuel economy, while guaranteeing power density. The spray-guided type gasoline direct injection (GDI) engine has an advantage of improved thermal efficiency and lower harmful emissions. Centrally mounted high pressure injector and adjacent spark plug allow stable lean combustion due to the flexible mixture stratification. In the present study, the performance and emissions characteristics of developed spray-guided type GDI combustion system were evaluated at various excess air ratio conditions. The specific fuel consumption and nitrogen oxides ($NO_x$) emissions were reduced due to the achievement of stable lean combustion under flammability limit. Multiple injection strategy was not helpful to improve fuel consumption while further reduction of $NO_x$ emissions was possible.

3-연소실형 GDI Engine의 성능 및 배기 배출물 특성에 관한 연구 (Study on the Characteristics of Performance and Exhaust Emissions of 3-Chamber GDI Engine)

  • 김봉수;정남훈;진선호;배종욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권1호
    • /
    • pp.37-47
    • /
    • 2002
  • Recently gasoline direct injection method has been applied to gasoline engine to reduce fuel consumption rate by controlling fuel air mixture on lean condition by means of stratified charging, and to reduce simultaneously. Pollutant emissions especially NOx and CO by lowering the combustion temperature. But difficulty of controling local fuel air ratio at ignition area in flammability limit unavoidably appeared, because it is merely controlled by injection timing with spatial and temporal distribution of fuel mixture. In this study, the authors devised a uniquely shaped combustion chamber so called three-chamber GDI engine, intended to keep the more reliable fuel air ratio at ignition area. The combustion chamber is divided into three regions. The first region is in the rich combustion division, where the fuel is injected from the fuel injection valve and ignited by the spark plug. The second region is in the lean combustion division, where the combustion gas from the rich combustion division flows out and burns on lean condition. And the last region is in the main combustion division ie in the cylinder, where the gas from the above two combustion divisions mixed together and completes the combustion during expansion stroke. They found that the stable range of operation of three-chamber GDI engine on low-load condition exists in the lean area of average equivalence ratio. And they also found that the reformed engine reveals less specific fuel consumption and less pollutant emissions compared with conventional carburettor type gasoline engine.

직분식 가솔린기관 인젝터의 연료 분무 특성 (Fuel Spray Characteristics of GDI Injector)

  • 권상일;이창식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제21회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.194-201
    • /
    • 2000
  • This paper is intended to analyze the macroscopic behavior and transient atomization characteristics of the high-pressure gasoline injector in direct-injection gasoline engine. The global spray behavior of fuel injector was visualized by shadowgraph technique. Time-resolved droplet axial and radial velocity components and droplet diameter were measured at many probe positions in both axial and radial directions by a two-component phase Doppler particle analyzer (PDPA). In order to obtain the influence of fuel injection pressure, the macroscopic visualization and experiment of particle measurement on the fuel spray were investigated at 3,5 and 7 MPa of injection pressure under different surrounding pressure in the spray chamber. The results of this work show that the fuel injection pressure of gasoline injector in GDI engine has influence upon the mean droplet diameter, mean velocity of spray droplet, the spray tip penetration, and spray width under the elevated ambient pressure.

  • PDF

낮은 엔진 부하의 운전조건에서 흡기포트 내 물 분사에 따른 가솔린 직접분사 엔진의 연소 특성 (Combustion Characteristics of Gasoline Direct Injection Engine with Water Injection into Intake Port under Low Engine-Load Operating Condition)

  • 전해강;이경환;최명식;박수한
    • 한국분무공학회지
    • /
    • 제23권2호
    • /
    • pp.96-101
    • /
    • 2018
  • The purpose of this study is to investigate the effect of water injection on combustion characteristics of gasoline direct injection (GDI) engine with turbo-charger under low-load operating condition. The test engine used in this study has four-cylinder and 10.2 of compression ratio. In order to study the effect of water injection ratio on combustion characteristics, the water was injected into the intake port from 10% to 50%, based on fuel injection quantity. From the experiment, it revealed that the water injection induced the improvement of fuel economy because of the advance of spark-timing by the reduction of in-cylinder temperature. In addition, the water injection caused the prolong of extension of the ignition delay and slight increase of burn duration.

직분식 가솔린 인젝터의 분사 조건에 따른 분무 특성 분석 (An Investigation of the Spray Characteristics according to Injection Conditions for a Gasoline Direct Injector)

  • 이기형;이창식;이창희;류재덕;배재일
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.89-95
    • /
    • 2001
  • Recently GDI(Gasoline Direct Injection) engine is spotlighted to achieve higher thermal efficiency under partial loads and better performance at full loads. To realize this system, it is essential to make both stratified combustion and homogeneous combustion. When compared to PFI(Port Fuel Injection) engine, GDI engine needs more complicated control and optimal design with injection system. In addition, spray pattern must be optimized according to injection timing because ambient pressure in combustion chamber is also varied. Thus spray structure should be analyzed in details to meet various conditions. In this experimental study, two types of visualization system were developed to simulate compression stroke and intake stroke, respectively. With an increase of the ambient pressure, the penetration length tends to decrease due to rising resistance caused by the drag force of the ambient air. Spray characteristics impinged on the piston has a significant effect on mixture stratification around the spark plug. These results provide the information on macroscopic spray structure and design factors far developing GDI injector.

  • PDF

급속 압축팽창 장치를 이용한 직접분사식 가솔린 기관의 실린더 내 분무 및 연소특성에 관한 연구 (A Study on In-cylinder and Combustion Characteristics of GDI Engine using RCEM)

  • 조규백;정용일
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.76-85
    • /
    • 1999
  • GDI(Gasoline Direct Injection( engine technology is well known as a new technology since it can improve fuel consumption and meet future emission regulations. But the GDI has many difficulties to be solved, such as complexity of injection control mode, unburned hydrocarbon, and restricted power. A 2-D shape combustion chamber was adopted to investigate mixture formation and combustion characteristics of GDI engine. Spray and combustion experiments were performed by changing the injection timing. injection pressure an din-cylinder flow in Rapid Compression and Expansion Machine(RCEM).Through the experiments, the detailed characteristics of fuel spray and combustion was analyzed by visualizing the in-cylinder phenomena according to the change of injection condition, and the optimal fuel injection timing and fuel injection pressure were obtained.

  • PDF

AMESim을 이용한, GDI 엔진에서 연료의 분사조건 변화에 따른 분사량 변화 예측 (Simulation Injection Mass with Variable Injection Condition in GDI Engine using AMESim)

  • 신석신;송진근;박종호
    • 한국분무공학회지
    • /
    • 제18권1호
    • /
    • pp.61-65
    • /
    • 2013
  • In case of GDI engine, shape of injected fuel and injection mass are one of the most important factors for good fuel efficiency and power. But it should be too inefficient and difficult to acquire injection mass data by experiment because condition in engine vary with temperature, pressure, and so on. So, this paper suggests the AMESim (Advanced Modeling Environment for Simulation of Engineering Systems) as simulation program to calculate injection mass. For both simulation and experiment, n-heptane is used as fuel. In AMESim, I modeled the GDI injector and simulated several cases. In experiment, I acquired the injection mass using Bosch method to apply ambient pressure. The AMESim show reasonable result in comparison with experimental data especially at injection pressure 15 MPa. Other conditions are also in good accord with experimental data but error is a little bit large because the injection mass is so low.

Engine Exhaust Particle Sizer를 통한 GDI 자동차에서 발생하는 나노미세입자 배출특성 분석 (Nano-particles emission characteristics of GDI vehicles using Engine Exhaust Particle Sizer)

  • 장지환;이종태;김기준;김정수;박성욱
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.95-96
    • /
    • 2014
  • In this study, the nano-particle emitted from Gasoline Direct Injection(GDI) vehicles was measured using the Engine Exhaust Particle Sizer(EEPS) on a chassis dynamometer. In addition, driving mode were divided into cold start mode(CVS-75, NEDC) and hot start mode(NIER-6, NIER-9) to evaluated the characteristics in the various operating conditions. The Particle Number(PN) concentration was analyzed for various driving patterns, i.e., acceleration, deceleration, idling, cruising and the phases of mode. In a result, Total concentration of PN for size was concentrated from 50 to 100 nm and acceleration represents the highest concentration among the driving pattern. It is believed that the increases quantity of fuel, and mixture will be richer than other patterns.

  • PDF

레이저 산란 영상을 이용한 GDI 인젝터의 엔트로피 해석법에 의한 분무 균일도 특성에 관한 연구 (An Investigation on the Spray Homogeneous Characteristics of a GDI Spray for Entropy Analysis Method using Laser Scattering Images)

  • 우영완;이창희;이기형;이창식
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.44-50
    • /
    • 2002
  • The spray characteristics of GDI(Gasoline Direct Injection) injector affects on engine efficiency and emission of a GDI engine. Thus, many researchers have investigated the spray characteristics and the mixture formation of GDI injector. In this study, it was tried to provide the fundamental data for GDl injector design which effects on the spray macroscopic characteristics such as penetration and spray angle. In addition, the mixture formation analyzed by using entropy analysis. The entropy analysis is based on the concept of statistical entropy, and it identifies the degree of homogeneity in the fuel concentration. The results show that as injection pressure increases but as ambient pressure increases, spray penetration decreases and spray angle doesn't affected by increasing injection pressure and ambient temperature. From the entropy analysis results, we could find that the direct diffusion phenomena is a dominant factor in the formation of a homogeneous mixture at downstream of GDI spray especially in vaporizing conditions.

거친 청감을 유발하는 엔진소음 개선 방향 고찰 (Improvement of engine noise causing rough sound quality)

  • 정인수;김석준;조덕형
    • 한국음향학회지
    • /
    • 제37권4호
    • /
    • pp.242-247
    • /
    • 2018
  • 지속적으로 강화되는 배기가스 및 연비 규제에 대응하기 위해 자동차 업계에서는 다양한 노력을 하고 있다. 하지만 이로 인해 NVH(Noise, Vibration, and Harshness) 성능이 악화되는 경우들이 많이 발생하고 있다. 사례로 가솔린 엔진의 고압 펌프 소음 및 MPI(Multi-Point Injection)와 GDI(Gasoline Direct Injection)의 듀얼 분사로 인한 가속 천이 소음, 가솔린 터보차저 소음, 디젤 엔진에서의 분사변수 캘리브레이션으로 인해 악화되는 연소음에 대한 원인 및 개선방향을 제시하였다. 이러한 소음들은 고주파 소음으로 운전자에게 거친 청감을 유발하기 때문에 적절한 NVH 대책으로 저감시키는 노력이 반드시 필요하다.