• Title/Summary/Keyword: GDF9

Search Result 22, Processing Time 0.027 seconds

Rapamycin Rescues the Poor Developmental Capacity of Aged Porcine Oocytes

  • Lee, Seung Eun;Kim, Eun Young;Choi, Hyun Yong;Moon, Jeremiah Jiman;Park, Min Jee;Lee, Jun Beom;Jeong, Chang Jin;Park, Se Pill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.5
    • /
    • pp.635-647
    • /
    • 2014
  • Unfertilized oocytes age inevitably after ovulation, which limits their fertilizable life span and embryonic development. Rapamycin affects mammalian target of rapamycin (mTOR) expression and cytoskeleton reorganization during oocyte meiotic maturation. The goal of this study was to examine the effects of rapamycin treatment on aged porcine oocytes and their in vitro development. Rapamycin treatment of aged oocytes for 24 h (68 h in vitro maturation [IVM]; $44h+10{\mu}M$ rapamycin/24 h, $47.52{\pm}5.68$) or control oocytes (44 h IVM; $42.14{\pm}4.40$) significantly increased the development rate and total cell number compared with untreated aged oocytes (68 h IVM, $22.04{\pm}5.68$) (p<0.05). Rapamycin treatment of aged IVM oocytes for 24 h also rescued aberrant spindle organization and chromosomal misalignment, blocked the decrease in the level of phosphorylated-p44/42 mitogen-activated protein kinase (MAPK), and increased the mRNA expression of cytoplasmic maturation factor genes (MOS, BMP15, GDF9, and CCNB1) compared with untreated, 24 h-aged IVM oocytes (p<0.05). Furthermore, rapamycin treatment of aged oocytes decreased reactive oxygen species (ROS) activity and DNA fragmentation (p<0.05), and downregulated the mRNA expression of mTOR compared with control or untreated aged oocytes. By contrast, rapamycin treatment of aged oocytes increased mitochondrial localization (p<0.05) and upregulated the mRNA expression of autophagy (BECN1, ATG7, MAP1LC3B, ATG12, GABARAP, and GABARAPL1), anti-apoptosis (BCL2L1 and BIRC5; p<0.05), and development (NANOG and SOX2; p<0.05) genes, but it did not affect the mRNA expression of pro-apoptosis genes (FAS and CASP3) compared with the control. This study demonstrates that rapamycin treatment can rescue the poor developmental capacity of aged porcine oocytes.

Identification of Genes Involved in Primordial-primary Follicle Transition by Suppression Subtractive Hybridization

  • Park, Chang-Eun;Yoon, Se-Jin;Jeon, Eun-Hyun;Kim, Young-Hoon;Lee, Sook-Hwan;Lee, Kyung-Ah
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.98-98
    • /
    • 2002
  • Recruitment of primordial follicles(PMF) is crucial for female fertility. however, factors and mechanisms that regulate this process is poorly understood. The present study was conducted to obtain an inclusive view of the gene expression and to identify novel factors and their pathways of regulating PMF arrest and/or growth initiation. Ovaries from one-day neonatal(consists of oocyte and PMF) and five-day old(consists of PMF and primary follicles, PRIF) mice were collected, either total RNA or mRNA was isolated, and suppression subtractive hybridization(SSH) was used to isolate and clone genes that differentially expressed in day 1 and day 5 ovaries. Confirmation that some of these genes are differentially expressed in PMF and/or in PRIF was accomplished by using laser captured microdissection(LCM), RT-PCR. in situ hybridization(ISH) and/or immunohistochemistry(IHC). In toto, 357 clones were sequenced and analyzed by BLAST and RIKEN program. Sequences of 330 clones significantly matched database entries while 27 clones were novel. Forty-two and 47 different genes were identified as differentially expressed in day 1 and day 5 ovaries, respectively, while 7 genes were expressed in both stages of ovaries. Day 5-subtracted library included several genes known as markers far growing follicles, such as ZP2, MATER, and fetuin. Among the genes with assigned functions, 23.8% was associated with cell cycle/apoptosis regulation, 7.1% with cellular structure, 11.9% with metabolism, 26.2% with signal transduction, and 31.0% with gene/protein expression in day 1; while 10.6%, 17.0%, 23.5%, 25.5%, and 23.4% in day 5, respectively. Genes such as GDF-8, Lats2, Septin2, and Weel were the highly expressed genes in PMF, while HSP84, Laminin2, MATER, MTi7, PTP, and Wrn were highly expressed genes in PRIF. We have successfully discovered list of genes expressed in day 1 and day 5 ovaries and confirmed that some of them are differentially expressed in PMF and/or PRIF. Gene expression profile from the present study would provide insight for the future study on the mechanism(s) involved in primordial-primary follicular transition. This work was Supported by Korean Health 21 RND Project, Ministry of Health and Welfare, Korea (01-PJ10-PG6-01GN13-0002).

  • PDF