• Title/Summary/Keyword: GCP Chip

Search Result 22, Processing Time 0.024 seconds

An Automatic Approach for Geometric Correction of Landsat Images

  • Hwang, Tae-Hyun;Chae, Gee-Ju;Park, Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.542-542
    • /
    • 2002
  • Geometric correction is a critical step to remove geometric distortions in satellite images. For correct geometric correction, Ground Control Points (GCPs) have to be chosen carefully to guarantee the quality of corrected satellite images. In this paper, we present an automatic approach for geometric correction by constructing GCP Chip database (GCP DB) that is a collection of pieces of images with geometric information. The GCP DB is constructed by exploiting Landsat's nadir-viewing property and the constructed GCP DB is combined with a simple block matching algorithm for efficient GCP matching. This approach reduces time and energy for tedious manual geometric correction and promotes usage of Landsat images.

  • PDF

A Method to Improve Matching Success Rate between KOMPSAT-3A Imagery and Aerial Ortho-Images (KOMPSAT-3A 영상과 항공정사영상의 영상정합 성공률 향상 방법)

  • Shin, Jung-Il;Yoon, Wan-Sang;Park, Hyeong-Jun;Oh, Kwan-Young;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.893-903
    • /
    • 2018
  • The necessity of automatic precise georeferencing is increasing with the increase applications of high-resolution satellite imagery. One of the methods for collecting ground control points (GCPs) for precise georeferencing is to use chip images obtained by extracting a subset of an image map such as an ortho-aerial image, and can be automated using an image matching technique. In this case, the importance of the image matching success rate is increased due to the limitation of the number of the chip images for the known reference points such as the unified control point. This study aims to propose a method to improve the success rate of image matching between KOMPSAT-3A images and GCP chip images from aerial ortho-images. We performed the image matching with 7 cases of band pair using KOMPSAT-3A panchromatic (PAN), multispectral (MS), pansharpened (PS) imagery and GCP chip images, then compared matching success rates. As a result, about 10-30% of success rate is increased to about 40-50% when using PS imagery by using PAN and MS imagery. Therefore, using PS imagery for image matching of KOMPSAT-3A images and aerial ortho-images would be helpful to improve the matching success rate.

Automatic Generation of GCP Chips from High Resolution Images using SUSAN Algorithms

  • Um Yong-Jo;Kim Moon-Gyu;Kim Taejung;Cho Seong-Ik
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.220-223
    • /
    • 2004
  • Automatic image registration is an essential element of remote sensing because remote sensing system generates enormous amount of data, which are multiple observations of the same features at different times and by different sensor. The general process of automatic image registration includes three steps: 1) The extraction of features to be used in the matching process, 2) the feature matching strategy and accurate matching process, 3) the resampling of the data based on the correspondence computed from matched feature. For step 2) and 3), we have developed an algorithms for automated registration of satellite images with RANSAC(Random Sample Consensus) in success. However, for step 1), There still remains human operation to generate GCP Chips, which is time consuming, laborious and expensive process. The main idea of this research is that we are able to automatically generate GCP chips with comer detection algorithms without GPS survey and human interventions if we have systematic corrected satellite image within adaptable positional accuracy. In this research, we use SUSAN(Smallest Univalue Segment Assimilating Nucleus) algorithm in order to detect the comer. SUSAN algorithm is known as the best robust algorithms for comer detection in the field of compute vision. However, there are so many comers in high-resolution images so that we need to reduce the comer points from SUSAN algorithms to overcome redundancy. In experiment, we automatically generate GCP chips from IKONOS images with geo level using SUSAN algorithms. Then we extract reference coordinate from IKONOS images and DEM data and filter the comer points using texture analysis. At last, we apply automatically collected GCP chips by proposed method and the GCP by operator to in-house automatic precision correction algorithms. The compared result will be presented to show the GCP quality.

  • PDF

Analysis of Optimal Resolution and Number of GCP Chips for Precision Sensor Modeling Efficiency in Satellite Images (농림위성영상 정밀센서모델링 효율성 재고를 위한 최적의 해상도 및 지상기준점 칩 개수 분석)

  • Choi, Hyeon-Gyeong;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1445-1462
    • /
    • 2022
  • Compact Advanced Satellite 500-4 (CAS500-4), which is scheduled to be launched in 2025, is a mid-resolution satellite with a 5 m resolution developed for wide-area agriculture and forest observation. To utilize satellite images, it is important to establish a precision sensor model and establish accurate geometric information. Previous research reported that a precision sensor model could be automatically established through the process of matching ground control point (GCP) chips and satellite images. Therefore, to improve the geometric accuracy of satellite images, it is necessary to improve the GCP chip matching performance. This paper proposes an improved GCP chip matching scheme for improved precision sensor modeling of mid-resolution satellite images. When using high-resolution GCP chips for matching against mid-resolution satellite images, there are two major issues: handling the resolution difference between GCP chips and satellite images and finding the optimal quantity of GCP chips. To solve these issues, this study compared and analyzed chip matching performances according to various satellite image upsampling factors and various number of chips. RapidEye images with a resolution of 5m were used as mid-resolution satellite images. GCP chips were prepared from aerial orthographic images with a resolution of 0.25 m and satellite orthogonal images with a resolution of 0.5 m. Accuracy analysis was performed using manually extracted reference points. Experiment results show that upsampling factor of two and three significantly improved sensor model accuracy. They also show that the accuracy was maintained with reduced number of GCP chips of around 100. The results of the study confirmed the possibility of applying high-resolution GCP chips for automated precision sensor modeling of mid-resolution satellite images with improved accuracy. It is expected that the results of this study can be used to establish a precise sensor model for CAS500-4.

Development of the Precision Image Processing System for CAS-500 (국토관측위성용 정밀영상생성시스템 개발)

  • Park, Hyeongjun;Son, Jong-Hwan;Jung, Hyung-Sup;Kweon, Ki-Eok;Lee, Kye-Dong;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.881-891
    • /
    • 2020
  • Recently, the Ministry of Land, Infrastructure and Transport and the Ministry of Science and ICT are developing the Land Observation Satellite (CAS-500) to meet increased demand for high-resolution satellite images. Expected image products of CAS-500 includes precision orthoimage, Digital Surface Model (DSM), change detection map, etc. The quality of these products is determined based on the geometric accuracy of satellite images. Therefore, it is important to make precision geometric corrections of CAS-500 images to produce high-quality products. Geometric correction requires the Ground Control Point (GCP), which is usually extracted manually using orthoimages and digital map. This requires a lot of time to acquire GCPs. Therefore, it is necessary to automatically extract GCPs and reduce the time required for GCP extraction and orthoimage generation. To this end, the Precision Image Processing (PIP) System was developed for CAS-500 images to minimize user intervention in GCP extraction. This paper explains the products, processing steps and the function modules and Database of the PIP System. The performance of the System in terms of processing speed, is also presented. It is expected that through the developed System, precise orthoimages can be generated from all CAS-500 images over the Korean peninsula promptly. As future studies, we need to extend the System to handle automated orthoimage generation for overseas regions.

GCP Data Acquisition using Image Chip (영상 CHIP을 이용한 지상기준점 정보취득)

  • 손홍규;이재원;허민;김기홍;이준명
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.349-353
    • /
    • 2003
  • 최근 관심이 증대되고 있는 국토모니터링과 관련하여 기존의 SPOT, IRS, KOMPSAT, LANDSAT 등의 중ㆍ저해상도 위성영상과 IKONOS 등의 고해상도 위성영상을 이용하여 국토의 변화를 탐지하고자 하는 시도가 활발히 진행되고 있다. 이 때 영상의 기하보정은 필수적인 과정이며 영상의 기하보정시 기준점을 취득하는 과정에 많은 시간과 작업비용이 소요된다. 현재 기준점 취득은 수치지도 등을 통해 기존의 지상기준점을 이용하는 방법과 GPS를 이용한 현지 측량방법이 활용되고 있는데 동일지역에 대해 매번 사업 때마다 수행되고 있는 실정이다. 따라서 이러한 과정을 보다 효율적으로 수행하기 위한 하나의 방안으로 본 연구에서는 image chip을 이용하여 GCP를 취득하고 이를 데이터베이스로 구축하여 기존의 작업을 자동화, 체계화하고자 하였다. 이를 통하여 중복측량 방지와 데이터의 균질성을 기할 수 있었다. Image Chip의 영상 정합을 위해서는 상관계수법과 최소제곱정합법을 이용하여 부영상소 단위까지 정합결과를 얻을 수 있었으며 위성의 header 정보로부터의 영상의 표정각과 입사각에 대한 정보를 이용하여 축척과 회전요소를 고려함으로써 영상 정합시 보다 정확한 기준점 정보를 취득할 수 있었다. 또한, 이종 센서간 영상정합 가능성에 대해서 연구한 결과 KOMPSAT과 SPOT간에는 신뢰할 만한 수준의 정합 결과를 얻을 수 있었으나 고해상도 영상의 경우에는 항공사진과 IKONOS의 영상 정합시 센서의 방사학적 특성의 차이로 신뢰할 안한 결과를 얻을 수 없었다. 영상 정합시 정확도에 영향을 미치는 인자들에 관한 실험 결과 센서의 파장, 계절, Chip 영상의 크기 등이 큰 영향을 미쳤으며 영상정합을 위해 영상 GCP를 데이터베이스에서 검색할 때 이에 대한 고려가 우선적으로 이루어져야 할 것으로 사료된다.n of hub-and-spoke system, integration of logistics bases, introduction of (automatic) parking building, diversification of transportation mode, and etc. At the same time, we constructed three practically executable scenarios based on those ideas. The first is "Center Hub" scenario, the second is "Metropolitan Hub" scenario. The third and last scenario is "Regional Consolidation of Warehouses (distribution centers)".f worldly desire' and 'cordiality' that one could be deserved his diligency becoming a part of the harmonious idealistic living place. Fourthly, on the character of story teller. Originally he is a incomer of "Gang-Ho" from real world. so that reason, he is showing dualism not to deny the loyalty oath to his king, while he intends to satisfy with the life in "Gang- Ho" separating himself from real world. As a gentry, at that time, the loyalty oath is inevitable one and that is found from wr

  • PDF

Region Matching of Satellite Images based on Wavelet Transformation (웨이브렛 변환에 기반한 위성 영상의 영역 정합)

  • Park, Jeong-Ho;Cho, Seong-Ik
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.4
    • /
    • pp.14-23
    • /
    • 2005
  • This paper proposes a method for matching two different images, especially satellite images. In the general image matching fields, when an image is compared to other image, they may have different properties on the size, contents, brightness, etc. If there is no noise in each image, in other words, they have identical pixel level and unchanged edges, the image matching method will be simple comparison between two images with pixel by pixel. However, in many applications, most of images to be matched should have much different properties. This paper proposes an efficient method for matching satellite images. This method is to match a raw satellite image with GCP chips. From this we can make a geometrically corrected image. The proposed method is based on wavelet transformation, not required any pre-processing such as histogram equalization, analysis of raw image like the traditional methods.

  • PDF

Improvement of KOMPSAT Imagery Locational Accuracy Using Value-Added Processing System (부가처리시스템을 이용한 다목적실용위성 영상자료 위치정확도 개선)

  • LEE, Kwang-Jae;YUN, Hee-Cheon;KIM, Youn-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.68-80
    • /
    • 2015
  • To increase the utilization of the KOrea Multi-Purpose SATellite(KOMPSAT) series imagery being developed pursuant to the national space development program, high quality images with enhanced locational accuracy should be created through standardized post-processing processes. In the present study, using the Value-Added Processing System(VAPS) constructed for the post-processing of KOMPSAT imagery, location correction experiments were conducted using KOMPSAT-2 and -3 imagery from domestic and overseas regions. First, 50 pieces from each of KOMPSAT-2 imagery were selected from South Korean and North Korean regions, and modeling was conducted using GCP Chips. According to the results, the Root Mean Square Errors(RMSE) for South Korea and North Korea were 1.59 pixels and 2.04 pixels, respectively, and the locational accuracy of ortho mosaic imagery using check points were 1.33m(RMSE) and 1.90m(RMSE), respectively. Meanwhile, in the case of overseas regions for which GCP could not be easily obtained, the improvement of locational accuracy could be identified through image corrections using Open Street Map(OSM). The VAPS and reference materials used in the present study are expected to be very useful in constructing a precise image DB for entire global regions.

Analysis of Applicability of RPC Correction Using Deep Learning-Based Edge Information Algorithm (딥러닝 기반 윤곽정보 추출자를 활용한 RPC 보정 기술 적용성 분석)

  • Jaewon Hur;Changhui Lee;Doochun Seo;Jaehong Oh;Changno Lee;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.387-396
    • /
    • 2024
  • Most very high-resolution (VHR) satellite images provide rational polynomial coefficients (RPC) data to facilitate the transformation between ground coordinates and image coordinates. However, initial RPC often contains geometric errors, necessitating correction through matching with ground control points (GCPs). A GCP chip is a small image patch extracted from an orthorectified image together with height information of the center point, which can be directly used for geometric correction. Many studies have focused on area-based matching methods to accurately align GCP chips with VHR satellite images. In cases with seasonal differences or changed areas, edge-based algorithms are often used for matching due to the difficulty of relying solely on pixel values. However, traditional edge extraction algorithms,such as canny edge detectors, require appropriate threshold settings tailored to the spectral characteristics of satellite images. Therefore, this study utilizes deep learning-based edge information that is insensitive to the regional characteristics of satellite images for matching. Specifically,we use a pretrained pixel difference network (PiDiNet) to generate the edge maps for both satellite images and GCP chips. These edge maps are then used as input for normalized cross-correlation (NCC) and relative edge cross-correlation (RECC) to identify the peak points with the highest correlation between the two edge maps. To remove mismatched pairs and thus obtain the bias-compensated RPC, we iteratively apply the data snooping. Finally, we compare the results qualitatively and quantitatively with those obtained from traditional NCC and RECC methods. The PiDiNet network approach achieved high matching accuracy with root mean square error (RMSE) values ranging from 0.3 to 0.9 pixels. However, the PiDiNet-generated edges were thicker compared to those from the canny method, leading to slightly lower registration accuracy in some images. Nevertheless, PiDiNet consistently produced characteristic edge information, allowing for successful matching even in challenging regions. This study demonstrates that improving the robustness of edge-based registration methods can facilitate effective registration across diverse regions.

CAS 500-1/2 Image Utilization Technology and System Development: Achievement and Contribution (국토위성정보 활용기술 및 운영시스템 개발: 성과 및 의의)

  • Yoon, Sung-Joo;Son, Jonghwan;Park, Hyeongjun;Seo, Junghoon;Lee, Yoojin;Ban, Seunghwan;Choi, Jae-Seung;Kim, Byung-Guk;Lee, Hyun jik;Lee, Kyu-sung;Kweon, Ki-Eok;Lee, Kye-Dong;Jung, Hyung-sup;Choung, Yun-Jae;Choi, Hyun;Koo, Daesung;Choi, Myungjin;Shin, Yunsoo;Choi, Jaewan;Eo, Yang-Dam;Jeong, Jong-chul;Han, Youkyung;Oh, Jaehong;Rhee, Sooahm;Chang, Eunmi;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.867-879
    • /
    • 2020
  • As the era of space technology utilization is approaching, the launch of CAS (Compact Advanced Satellite) 500-1/2 satellites is scheduled during 2021 for acquisition of high-resolution images. Accordingly, the increase of image usability and processing efficiency has been emphasized as key design concepts of the CAS 500-1/2 ground station. In this regard, "CAS 500-1/2 Image Acquisition and Utilization Technology Development" project has been carried out to develop core technologies and processing systems for CAS 500-1/2 data collecting, processing, managing and distributing. In this paper, we introduce the results of the above project. We developed an operation system to generate precision images automatically with GCP (Ground Control Point) chip DB (Database) and DEM (Digital Elevation Model) DB over the entire Korean peninsula. We also developed the system to produce ortho-rectified images indexed to 1:5,000 map grids, and hence set a foundation for ARD (Analysis Ready Data)system. In addition, we linked various application software to the operation system and systematically produce mosaic images, DSM (Digital Surface Model)/DTM (Digital Terrain Model), spatial feature thematic map, and change detection thematic map. The major contribution of the developed system and technologies includes that precision images are to be automatically generated using GCP chip DB for the first time in Korea and the various utilization product technologies incorporated into the operation system of a satellite ground station. The developed operation system has been installed on Korea Land Observation Satellite Information Center of the NGII (National Geographic Information Institute). We expect the system to contribute greatly to the center's work and provide a standard for future ground station systems of earth observation satellites.