• Title/Summary/Keyword: GCM evaluation

Search Result 35, Processing Time 0.029 seconds

Uncertainty assessment caused by GCMs selection on hydrologic studies

  • Ghafouri-Azar, Mona;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.151-151
    • /
    • 2018
  • The present study is aimed to quantifying the uncertainty in the general circulation model (GCM) selection and its impacts on hydrology studies in the basins. For this reason, 13 GCMs was selected among the 26 GCM models of the Fifth Assessment Report (AR5) scenarios. Then, the climate data and hydrologic data with two Representative Concentration Pathways (RCPs) of the best model (INMCM4) and worst model (HadGEM2-AO) were compared to understand the uncertainty associated with GCM models. In order to project the runoff, the Precipitation-Runoff Modelling System (PRMS) was driven to simulate daily river discharge by using daily precipitation, maximum and minimum temperature as inputs of this model. For simulating the discharge, the model has been calibrated and validated for daily data. Root mean square error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were applied as evaluation criteria. Then parameters of the model were applied for the periods 2011-2040, and 2070-2099 to project the future discharge the five large basins of South Korea. Then, uncertainty caused by projected temperature, precipitation and runoff changes were compared in seasonal and annual time scale for two future periods and RCPs compared to the reference period (1976-2005). The findings of this study indicated that more caution will be needed for selecting the GCMs and using the results of the climate change analysis.

  • PDF

Future Climate Change Impact Assessment of Chungju Dam Inflow Considering Selection of GCMs and Downscaling Technique (GCM 및 상세화 기법 선정을 고려한 충주댐 유입량 기후변화 영향 평가)

  • Kim, Chul Gyum;Park, Jihoon;Cho, Jaepil
    • Journal of Climate Change Research
    • /
    • v.9 no.1
    • /
    • pp.47-58
    • /
    • 2018
  • In this study, we evaluated the uncertainty in the process of selecting GCM and downscaling method for assessing the impact of climate change, and influence of user-centered climate change information on reproducibility of Chungju Dam inflow was analyzed. First, we selected the top 16 GCMs through the evaluation of spatio-temporal reproducibility of 29 raw GCMs using 30-year average of 10-day precipitation without any bias-correction. The climate extreme indices including annual total precipitation and annual maximum 1-day precipitation were selected as the relevant indices to the dam inflow. The Simple Quantile Mapping (SQM) downscaling method was selected through the evaluation of reproducibility of selected indices and spatial correlation among weather stations. SWAT simulation results for the past 30 years period by considering limitations in weather input showed the satisfactory results with monthly model efficiency of 0.92. The error in average dam inflow according to selection of GCMs and downscaling method showed the bests result when 16 GCMs selected raw GCM analysi were used. It was found that selection of downscaling method rather than selection of GCM is more is important in overall uncertainties. The average inflow for the future period increased in all RCP scenarios as time goes on from near-future to far-future periods. Also, it was predicted that the inflow volume will be higher in the RCP 8.5 scenario than in the RCP 4.5 scenario in all future periods. Maximum daily inflow, which is important for flood control, showed a high changing rate more than twice as much as the average inflow amount. It is also important to understand the seasonal fluctuation of the inflow for the dam management purpose. Both average inflow and maximum inflow showed a tendency to increase mainly in July and August during near-future period while average and maximum inflows increased through the whole period of months in both mid-future and far-future periods.

User-Centered Climate Change Scenarios Technique Development and Application of Korean Peninsula (사용자 중심의 기후변화 시나리오 상세화 기법 개발 및 한반도 적용)

  • Cho, Jaepil;Jung, Imgook;Cho, Wonil;Hwang, Syewoon
    • Journal of Climate Change Research
    • /
    • v.9 no.1
    • /
    • pp.13-29
    • /
    • 2018
  • This study presented evaluation procedure for selecting appropriate GCMs and downscaling method by focusing on the climate extreme indices suitable for climate change adaptation. The procedure includes six stages of processes as follows: 1) exclusion of unsuitable GCM through raw GCM analysis before bias correction; 2) calculation of the climate extreme indices and selection of downscaling method by evaluating reproducibility for the past and distortion rate for the future period; 3) selection of downscaling method based on evaluation of reproducibility of spatial correlation among weather stations; and 4) MME calculation using weight factors and evaluation of uncertainty range depending on number of GCMs. The presented procedure was applied to 60 weather stations where there are observed data for the past 30 year period on Korea Peninsula. First, 22 GCMs were selected through the evaluation of the spatio-temporal reproducibility of 29 GCMs. Between Simple Quantile Mapping (SQM) and Spatial Disaggregation Quantile Delta Mapping (SDQDM) methods, SQM was selected based on the reproducibility of 27 climate extreme indices for the past and reproducibility evaluation of spatial correlation in precipitation and temperature. Total precipitation (prcptot) and annual 1-day maximum precipitation (rx1day), which is respectively related to water supply and floods, were selected and MME-based future projections were estimated for near-future (2010-2039), the mid-future (2040-2069), and the far-future (2070-2099) based on the weight factors by GCM. The prcptot and rx1day increased as time goes farther from the near-future to the far-future and RCP 8.5 showed a higher rate of increase in both indices compared to RCP 4.5 scenario. It was also found that use of 20 GCM out of 22 explains 80% of the overall variation in all combinations of RCP scenarios and future periods. The result of this study is an example of an application in Korea Peninsula and APCC Integrated Modeling Solution (AIMS) can be utilized in various areas and fields if users want to apply the proposed procedure directly to a target area.

Evaluation of Agro-Climatic Index Using Multi-Model Ensemble Downscaled Climate Prediction of CMIP5 (상세화된 CMIP5 기후변화전망의 다중모델앙상블 접근에 의한 농업기후지수 평가)

  • Chung, Uran;Cho, Jaepil;Lee, Eun-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.108-125
    • /
    • 2015
  • The agro-climatic index is one of the ways to assess the climate resources of particular agricultural areas on the prospect of agricultural production; it can be a key indicator of agricultural productivity by providing the basic information required for the implementation of different and various farming techniques and practicalities to estimate the growth and yield of crops from the climate resources such as air temperature, solar radiation, and precipitation. However, the agro-climate index can always be changed since the index is not the absolute. Recently, many studies which consider uncertainty of future climate change have been actively conducted using multi-model ensemble (MME) approach by developing and improving dynamic and statistical downscaling of Global Climate Model (GCM) output. In this study, the agro-climatic index of Korean Peninsula, such as growing degree day based on $5^{\circ}C$, plant period based on $5^{\circ}C$, crop period based on $10^{\circ}C$, and frost free day were calculated for assessment of the spatio-temporal variations and uncertainties of the indices according to climate change; the downscaled historical (1976-2005) and near future (2011-2040) RCP climate sceneries of AR5 were applied to the calculation of the index. The result showed four agro-climatic indices calculated by nine individual GCMs as well as MME agreed with agro-climatic indices which were calculated by the observed data. It was confirmed that MME, as well as each individual GCM emulated well on past climate in the four major Rivers of South Korea (Han, Nakdong, Geum, and Seumjin and Yeoungsan). However, spatial downscaling still needs further improvement since the agro-climatic indices of some individual GCMs showed different variations with the observed indices at the change of spatial distribution of the four Rivers. The four agro-climatic indices of the Korean Peninsula were expected to increase in nine individual GCMs and MME in future climate scenarios. The differences and uncertainties of the agro-climatic indices have not been reduced on the unlimited coupling of multi-model ensembles. Further research is still required although the differences started to improve when combining of three or four individual GCMs in the study. The agro-climatic indices which were derived and evaluated in the study will be the baseline for the assessment of agro-climatic abnormal indices and agro-productivity indices of the next research work.

Evaluation of multiplicative random cascade models for CMIP 6 rainfall data temporal disaggregation (MRC 모형의 CMIP6 강우 자료에 대한 시간 분해 성능 평가)

  • Kwak, Jihye;Lee, Hyunji;Kim, Jihye;Jun, Sang Min;Lee, Jae Nam;Kang, Moon Seong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.367-367
    • /
    • 2021
  • 최근 기후변화로 인해 극한 강우 사상의 빈도가 잦아짐에 따라 수공 구조물의 안전성이 저해되거나 인명 및 재산 피해가 발생할 가능성이 커지고 있다. 기후변화에 따른 기상현상의 변화 추세를 파악하고 대비하기 위해 CMIP (Coupled Model Intercomparison Project Phase)의 GCM(General Circulation Model) 기상자료 산출물이 활발하게 이용되고 있다. 기후변화 시나리오는 홍수기 방재 대책 수립 등의 연구에도 적용되고 있으나, GCM에서 산출된 기상자료의 시간 간격은 24시간 혹은 3시간 정도로 시간적 해상도가 낮아 홍수 모형의 입력자료로 사용되기 어려운 형태를 가지고 있다. 따라서 기후변화 시나리오를 홍수 모의 등의 분야에 접목하기 위해서는 GCM 자료의 시간적 해상도를 1시간 이하로 낮춤으로써 시나리오 산출물이 홍수모형과 적절하게 연결될 수 있도록 해야 한다. MRC (Multiplicative Random Cascade) 모형은 국내외에서 예보강우의 시간 분해 및 일강우 데이터 분해 연구에 활용된 바 있으며 관측 강우에 대하여 분해 성능이 준수함이 확인되었다. 이에 본 연구에서는 MRC 모형을 활용하여 미래 기후변화 시나리오 산출물에 적용함으로써 MRC 모형이 일단위 및 3시간 단위 기후변화 자료의 시간 분해에 대해 적절한 성능을 수행하는지 여부를 분석하고, 기후변화 자료의 최소 시간 간격별 강우 분해 결과를 비교·분석하고자 하였다. 본 연구의 결과는 향후 기후변화 시나리오 기반 기상자료 시간 분해에 대한 MRC 모형의 적용성을 평가하는 기초 자료로 활용될 수 있을 것으로 사료된다.

  • PDF

Evaluation and analysis of future flood probabilities in rural watershed based on probability theory (확률론 기반 농촌 유역의 미래 홍수 확률 평가 및 분석)

  • Kwak, Jihye;Lee, Hyunji;Kim, Jihye;Jun, Sang Min;Kim, Seokhyeon;Kim, Sinae;Kang, Moon Seong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.187-187
    • /
    • 2022
  • 우리나라의 농촌 유역은 크게 1) 상류에 위치한 농업용 저수지, 2) 저수지 방류부, 3) 저수지 하류하천, 4) 하류 농업 지대로 구성된다. 이들 모두 유역의 홍수·침수와 연관되어 있으나 각각의 설계 빈도가 서로 달라 일시에 수용 가능한 수자원의 양이 상이하다. 예컨대 극한 강우가 발생한 경우 PMP를 고려하여 설계된 저수지에서는 유입 홍수량이 통제될 수 있으나 50-200년 빈도로 설계된 하류하천에서는 측면 유입량 때문에 홍수가 발생할 수 있다. 따라서 유역의 홍수 확률을 산출할 때에는 유역 구성지역별 홍수 확률을 산정한 후 종합적으로 고려할 필요가 있다. 특히 농촌유역의 경우 하류하천 및 농경지의 설계 빈도 기준이 도시에 비해 낮아 유역 구성요소 간 처리 가능한 수자원 양의 차이가 크다. 따라서 본 연구에서는 농촌 유역을 대상으로 연구를 진행하였다. 한편, 최근 기후변화로 인해 극한 강우 사상의 빈도가 잦아짐에 따라 유역 내 홍수의 발생이 증가하고 있다. 따라서 기후변화에 따른 미래 농촌 유역의 홍수 발생 여부 파악이 필수적이다. 이에 본 연구에서는 CMIP 6 (Coupled Model Intercomparison Project Phase 6)의 GCM (General Circulation Model) 기상산출물을 농촌 유역에 적용함으로써 미래 농촌 유역의 홍수 발생 여부를 확인하고자 하였다. 또한, CMIP 6의 GCM 산출 기상자료의 시간 단위는 24시간 혹은 3시간으로 시간적 해상도가 낮으므로 유역 홍수 모의를 위하여 GCM 산출물의 시간 분해를 수행하였다. 본 연구에서는 MRC (Multiplicative Random Cascade) 모형을 기후변화 시나리오 기상자료에 적용함으로써 강우 자료의 시간 분해를 수행하고, 시간 분해 결과물을 활용하여 농촌 유역의 미래 홍수 확률을 산정해보고자 하였다. 본 연구의 결과는 향후 농촌 유역의 홍수 확률 산정 기법에 관한 기초 자료로 활용될 수 있을 것으로 사료된다.

  • PDF

Assessment of CMIP5 GCMs for future extreme drought analysis (미래 극한 가뭄 전망을 위한 CMIP5 GCMs 평가)

  • Hong, Hyun-Pyo;Park, Seo-Yeon;Kim, Tae-Woong;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.7
    • /
    • pp.617-627
    • /
    • 2018
  • In this study, CMIP5 GCMs rainfall data (2011~2099) based on RCP scenarios were used to analyze the extreme drought evaluation for the future period. For prospective drought assessment, historical observations were used based on the Automated Surface Observing System (ASOS) data (1976~2010) of the Korea Meteorological Administration. Through the analysis of various indicators, such as average annual rainfall, rainy days, drought spell, and average drought severity was carried out for the drought evaluation of the five major river basins (Han river, Nakdong river, Geum river, Sumjin river, and Youngsan river) over the Korean peninsula. The GCMs that predicted the most severe future droughts are CMCC-CMS, IPSL-CM5A-LR and IPSL-CM5A-MR. Moderate future droughts were predicted from HadGEM2-CC, CMCC-CM and HadGEM2-ES. GCMs with relatively weak future drought forecasts were selected as CESM1-CAM5, MIROC-ESM-CHEM and CanESM2. The results of this study might be used as a fundamental data to choose a reasonable climate change scenario in future extreme drought evaluation.

Evaluation of CMIP5 GCMs for simulating desert area over Sahel region (CMIP5 GCM을 활용한 사헬 지대의 사막면적 모의 평가 및 분석)

  • Seo, Hocheol;Choi, Yeon-Woo;Eltahir, Elfatih;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.255-255
    • /
    • 2020
  • 아프리카 대륙에서 존재하는 가장 큰 사하라 사막(Sahara desert)의 면적은 지난 1세기 동안 기후변화로 인하여 10% 정도 증가하였고, 미래에도 기온상승으로 인하여 증가할 것으로 판단된다. 사하라 사막 면적의 증가로 인하여 아프리카의 자연식생과 수자원뿐만 아니라 아프리카에 거주하는 사람들의 삶에 많은 영향을 미치기에 사막의 면적 또는 경계선의 위치를 예측함은 매우 중요하다. 본 연구에서는 Coupled Model Intercomparison Project Phase 5 (CMIP5)의 36개 Global Climate Models (GCMs)과 ERA-interim 재분석 자료의 1979~2000년 강수 자료들을 이용하여 사헬(Sahel) 지대 서쪽(15W~15E, 10N~20N)과 동쪽(15E~35E, 10N~20N)의 강수량과 사막경계선을 비교하였다. 또한, 각 모델의 과거 모의 성능을 평가하여 미래 기후 예측성을 판단하고자 한다. 본 연구에서는 22년 평균 강수량이 200mm 이하인 지역을 사막이라 정의하고, 모델별로 연평균 강수량과 사막경계선에 대한 root mean square error(RMSE)를 산정하여 평가하였다. 또한, 습윤 정적 에너지(Moist. Static Energy; MSE), 바람(풍속 및 풍향) 자료를 이용하여 각 모델의 사막경계선의 오차에 대한 이유를 분석하였다. 이 연구를 바탕으로 하여 사헬 지대의 강수량 및 사막면적 모의의 불확실성 요소를 이해하고, 미래 상세 지역 수문기후 변화 예측에 활용 가능한 GCMs을 선별할 수 있을 것으로 판단한다.

  • PDF

Spatial Downscaling Method for Use of GCM Data in A Mountainous Area (산악지역에 GCM 자료를 이용하기 위한 공간 축소방법 개발)

  • Kim, Soojun;Kang, Na Rae;Kim, Yon Soo;Lee, Jong So;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.115-125
    • /
    • 2013
  • This study established a methodology for the application of downscaling technique in a mountainous area having large spatial variations of rainfall and tried to estimate the change of rainfall characteristics in the future under climate change using the established method. The Namhan river basin, which is in the mountainous area of the Korean peninsula, has been chosen as the study area. Artificial Neural Network - Simple Kriging with varying local means (ANN-SKlm) has been built by combining artificial neural network, which is one of the general downscaling techniques, and SKlm technique, which can reflect the geomorphologic characteristics like elevation of the study area. The evaluation of SKlm technique was done by using the monthly rainfalls at six weather stations which KMA(Korea Meteorological Administration) is managing in the basin. The ANN-SKlm technique was compared with the Thiessen technique and ordinary kriging(OK) technique. According to the evaluation result of each technique the SKlm technique showed the best result.

Evaluation of Muscle Activity and Foot Pressure during Gait, and Balance Test in Patients with Genu Valgum (무릎외반의 균형 검사 및 보행 중에 근활성도와 발바닥압의 평가)

  • Yoon, Jeong-Uk;Yoo, Kyung-Tae;Lee, Ho-Seong
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.17 no.1
    • /
    • pp.127-137
    • /
    • 2022
  • PURPOSE: This study sought to evaluate muscle activity and foot pressure during gait, and balance in female college students with genu valgum. METHOD: Participants were assigned based on their Q-angle to genu valgum group greater than 20° (GVG, n = 12), unilateral genu valgum group greater than 20° (UVG, n = 11), and control group (CON, n = 13). All subjects were evaluated for balance (Trace length, C90 area, C90 angle, and the Romberg test), muscle activity (gluteus medius; GM, tensor fasciae latae; TFL, vastus medialis; VM, vastus lateralis; VL, biceps femoris; BF, gastrocnemius; GCM and tibialis anterior; TA) and foot pressure (F/F ratio, R/F ratio, Hallux, 2~5 toe, 1st MT, 2~4 MT, 5th MT, Midfoot, M/heel, and L/heel) during gait. RESULTS: Romberg test showed significantly increased loss of balance in the UVG group compared with the CON. In the forward position, the imbalance was significantly increased in the UVG and GVG groups compared to the CON. Muscle activity of VL, GCM, and TA significantly increased in the GVG group compared with the CON. Static foot pressure, 1st MT significantly increased in the GVG compared to the CON group. The 5th MT significantly decreased in the CON compared with the GVG group. The R/F ratio significantly decreased in the GVG compared to the CON group. In dynamic foot pressure, the 2~5 toe significantly increased in the GVG compared with the UVG group. The left 5th MT significantly decreased in the UVG compared with the CON and GVG groups. CONCLUSION: These results indicate that genu valgum has a negative effect on balance, muscle activity, and foot pressure during gait in female college students.