• Title/Summary/Keyword: GBVS

Search Result 2, Processing Time 0.013 seconds

Image Classification Using Bag of Visual Words and Visual Saliency Model (이미지 단어집과 관심영역 자동추출을 사용한 이미지 분류)

  • Jang, Hyunwoong;Cho, Soosun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.12
    • /
    • pp.547-552
    • /
    • 2014
  • As social multimedia sites are getting popular such as Flickr and Facebook, the amount of image information has been increasing very fast. So there have been many studies for accurate social image retrieval. Some of them were web image classification using semantic relations of image tags and BoVW(Bag of Visual Words). In this paper, we propose a method to detect salient region in images using GBVS(Graph Based Visual Saliency) model which can eliminate less important region like a background. First, We construct BoVW based on SIFT algorithm from the database of the preliminary retrieved images with semantically related tags. Second, detect salient region in test images using GBVS model. The result of image classification showed higher accuracy than the previous research. Therefore we expect that our method can classify a variety of images more accurately.

Object Classification based on Weakly Supervised E2LSH and Saliency map Weighting

  • Zhao, Yongwei;Li, Bicheng;Liu, Xin;Ke, Shengcai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.364-380
    • /
    • 2016
  • The most popular approach in object classification is based on the bag of visual-words model, which has several fundamental problems that restricting the performance of this method, such as low time efficiency, the synonym and polysemy of visual words, and the lack of spatial information between visual words. In view of this, an object classification based on weakly supervised E2LSH and saliency map weighting is proposed. Firstly, E2LSH (Exact Euclidean Locality Sensitive Hashing) is employed to generate a group of weakly randomized visual dictionary by clustering SIFT features of the training dataset, and the selecting process of hash functions is effectively supervised inspired by the random forest ideas to reduce the randomcity of E2LSH. Secondly, graph-based visual saliency (GBVS) algorithm is applied to detect the saliency map of different images and weight the visual words according to the saliency prior. Finally, saliency map weighted visual language model is carried out to accomplish object classification. Experimental results datasets of Pascal 2007 and Caltech-256 indicate that the distinguishability of objects is effectively improved and our method is superior to the state-of-the-art object classification methods.