• Title/Summary/Keyword: GBFS

Search Result 31, Processing Time 0.025 seconds

A Study on Earth Pressure Properties of Granulated Blast Furnace Slag Used as Back-fill Material (뒷채움재로 이용한 고로 수쇄슬래그의 토압특성에 관한 실험적 연구)

  • Baek, Won-Jin;Lee, Kang-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.119-127
    • /
    • 2006
  • Granulated Blast Furnace Slag (GBFS) is produced in the manufacture process of pig-iron and shows a similar particle formation to that of natural sea sand and also shows light weight, high shear strength, well permeability, and especially has a latent hydraulic property by which GBFS is solidified with time. Therefore, when GBFS is used as a backfill material of quay or retaining walls, the increase of shear strength induced by the hardening is presumed to reduce the earth pressure and consequently the construction cost of harbor structures decreases. In this study, using the model sand box (50 cm$\times$50 cm$\times$100 cm), the model wall tests were carried out on GBFS and Toyoura standard sand, in which the resultant earth pressure, a wall friction and the earth pressure distribution at the movable wall surface were measured. In the tests, the relative density was set as Dr=25, 55 and 70% and the wall was rotated at the bottom to the active earth pressure side and followed by the passive side. The maximum horizontal displacement at the top of the wall was set as ${\pm}2mm$. By these model test results, it is clarified that the resultant earth pressure obtained by using GBFS is smaller than that of Toyoura sand, especially in the active-earth pressure.

Hydration Reaction of Non-Sintering Cement using Waste Gypsum and Waste Lime with Activators (폐석고 및 폐석회를 자극제로 이용한 비소성 시멘트의 수화반응)

  • Mun, Kyoung-Ju;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.232-235
    • /
    • 2004
  • This study aims to manufacture non-sintering cement(NSC) by adding phosphogypsum(PG) and waste lime(WL) to granulated blast furnace slag(GBFS) as sulfate and alkali activators. This study also investigates the basic physical properties and hydration reaction of NSC, and evaluates its reusing possibility as construction material. Results obtained from this study have shown that GBFS was affected by $So_4^{2-}$ in waste PG and stimuli under wet condition, left slag components, created Ettringite and CSH gels, and eventually started being hydrated. These hydrated creations formed dense structures like CSH based on Ettringite and contributed in allowing the mortar to reveal high strength.

  • PDF

Chemical resistance of Non-Sintered Cement Mortar using Inorganic Industrial Wastes as activator (무기계 산업폐기물을 자극제로 이용한 비소성 시멘트 모르타르의 내화학성)

  • Mun Kyoung Ju;Lee Chol Woong;Park Won Chun;Soh Yang Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.607-610
    • /
    • 2005
  • If cement can be manufactured with industrial byproducts such as granulated blast furnace slag(GBFS), phosphogypsum(PG), and waste lime(WL) instead of clinker as its counterproposal, there would be many advantages, including maximum use of these industrial byproducts for high value-added resources, conservation of natural resources and energy by omitting the use of clinker, minimized environmental pollution problems caused by $CO_2$ discharge, and reduction of the production cost. This research investigates the chemical resistance of NSC mortar added PG and WL to GBFS as sulfate and alkali activators. The result of experiment of chemical resistance, showed that NSC is very excellent in acid resistance and seawater resistanc. Such a reasons are that the hydrate like CSH gel and ettringite formed dense pore structure of NSC matrix.

  • PDF

Chloride ion Permeability of Non-Sintered Cement Concrete using Inorganic Industrial Wastes as activator (무기계 산업폐기물을 자극제로 이용한 비소성 시멘트 콘크리트의 염소이온 침투 저항성)

  • Mun, Kyoung-Ju;Lee, Chol-Woong;Park, Won-Chun;So, Seung-Young;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.453-456
    • /
    • 2006
  • If cement can be manufactured with industrial byproducts such as granulated blast furnace slag(GBFS), phosphogypsum(PG), and waste lime(WL) instead of clinker as its counterproposal, there would be many advantages, including maximum use of these industrial byproducts for high value-added resources, conservation of natural resources and energy by omitting the use of clinker, minimized environmental pollution problems caused by CO2 discharge, and reduction of the production cost. This research investigates the chloride ion permeability of NSC concrete added PG and WL to GBFS as sulfate and alkali activators. The result of experiment of chloride ion permeability, showed that NSC is very excellent in seawater resistance. Such a reasons are that the hydrate like CSH gel and ettringite formed dense pore structure of NSC matrix.

  • PDF

Ready mixed concrete behavior of granulated blast furnace slag contained cement

  • Karim, M. Razaul;Islam, A.B.M. Saiful;Chowdhury, Faisal I.;Rehman, Sarder Kashif Ur;Islam, Md. Rabiul
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.139-147
    • /
    • 2018
  • Due to enhanced construction requirement, ready mixed concrete are being popular day by day. The current study aimed to develop ready mixed concrete using GBFS contained cement and determine its properties of fresh and hardened states. A real scale experiment was set up in a ready mixed plant for measuring workability and compressive strength. The workability was tested after mixing (within 5 minutes), 30, 60, 90, 120 and 150 minutes of the running of bulk carrier. The ready mixed carrier employed spinning motion i.e., rotating around its axis with 20 RPM and running on road with 1km/h speed. The mixing ratio of cement: sand:gravel, water to cement ratio, super plasticizer were, 1:1.73:2.47, 0.40 and 6% of cement, respectively. The chemical composition of raw material was determined using XRF and the properties of cements were measured according to ASTM standards. The experimental results confirm that the cement with composition of 6.89% of GBFS, 4% of Gypsum and 89.11% of clinker showed the good compressive strength and workability of concrete after 150 minutes of the spinning motion in bulk carrier.

AtbZIP16 and AtbZIP68, two new members of GBFs, can interact with other G group bZIPs in Arabidopsis thaliana

  • Shen, Huaishun;Cao, Kaiming;Wang, Xiping
    • BMB Reports
    • /
    • v.41 no.2
    • /
    • pp.132-138
    • /
    • 2008
  • AtbZIP16 and AtbZIP68 are two putative G group bZIP transcription factors in Arabidopsis thaliana, the other three members of G group bZIPs are GBF1-3 which can bind G-box. Members of G group have conservative protein structure: highly homological basic region and a proline-rich domain in the N-terminal region. Here, we report that AtbZIP16 and AtbZIP68 could bind cis elements with ACGT core, such as G-box, Hex, C-box and As-1, but with different binding affinities which from high to low were G-box > Hex > C-box > As-1; AtbZIP16 and AtbZIP68 could form homodimer and form heterodimer with other members of G group; N-terminal proline rich domain of AtbZIP16 had transactivation activity in yeast cells while that of AtbZIP68 did not; AtbZIP16 and AtbZIP68 GFP fusion protein localized in the nucleus of onion epidermal cells. These results indicated that AtbZIP16 and AtbZIP68 were two new members of GBFs. In Arabidopsis, AtbZIP16 and AtbZIP68 may also participate in light-responsive process in which GBF1-3 are involved.

The Specification of OPC and Micro Cement using the Admixture (보통포틀랜드 시멘트와 초미립자 시멘트의 혼화재료 혼입시 특성)

  • Kim, Deuck-Mo;Lee, Wha-Young;Park, Won-Chun;Mun, Kyung-Ju;Soh, Seung-Young;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.905-908
    • /
    • 2008
  • The existing concrete using ordinary portland cement has difficult in earth strength. so our study proceeded in using the micro cement. the result of experiment is follow that strength of micro cement was hard better than ordinary portland cement in early strength but flow of ordinary portland cement was better than micro cement. when OPC and MC mixed by fly-ash, flow degree is increased because of ball baring. fly-ash type wicked in early strength but flyash type hard than 28days strength of OPC. flow of GBFS is decreased, early strength is increased. when fly-ash mixed in MC, it was wicked strength.

  • PDF

The properties of cement mortar using waste pottery powder (폐도자기분말의 혼입에 따른 시멘트 모르타르의 특성)

  • Lee, Hwa-Young;Kim, Deuck-Mo;Mun, Kyoung-Ju;So, Seung-Young;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.785-788
    • /
    • 2008
  • Ceramics manufactures in the nation produced more than 5,000 tons of waste pottery a year increasing industrial waste quantity. However, Almost researches were made to reduce environmental pollution and recycle waste ware. It is needed that they are used as recycled materials in order to prevent environmental pollution and gain economic profits. Therefore, the purpose of this study is to present the method of utilizing the recycled cements that are obtained from waste pottery. The test results that replacement of waste pottery powder by cement admixture at the level 10% had effect on the stripping strength(compressive strength). Also, When GBFS and WP used by cement admixture, WP is better than GBFS.

  • PDF

Properties and Applicability Evaluation of Control Low Strength Materials Used Industrial by-Products of A Great Quantity (다량의 산업부산물을 활용한 슬러리계 되메움 재료의 물성 및 현장적용 가능성 평가)

  • Liao, Xiaokai;Her, Jae-Won;Kim, Dong-Hun;Lim, Nam-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.40-41
    • /
    • 2020
  • This study has resulted in the following findings. First, Using more than 30% of GBFS to replace FA enabled bleeding control through improved fluidity. Moreover, it has been confirmed that effective strength and proper quality can be achieved when it was applied as a backfilling material with higher early strength than the base material. Second, When using more than 30% of FNS to replace sand, it was found that adding 0.3~0.35 of the AE agent is effective for bleeding control through improved fluidity. Third, When using more than 30% of both GBFS and FNS in combination, it was found that adding 0.3~0.35 of the AE agent is effective for bleeding control through improved fluidity. Also, it was confirmed that proper mixing of 15~60% of GF secured the effective strength and desired quality as a refiller and joint filler material.

  • PDF

Drying shrinkage of Non-Sintered Cement Concrete with various curing condition (양생조건 변화에 따른 비소성 시멘트 콘크리트의 건조수축)

  • Mun Kyoung-Ju;Park Won-Chun;Soh Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.357-360
    • /
    • 2005
  • This research investigates the drying shrinkage of non-sintering cement(NSC) matrix added phosphogypsum(PG) and waste lime(WL) to granulated blast furnace slag(GBFS) as sulfate and alkali activators with various curing condition. The experimental results are follow: When the moisture is fully supplied at the early curing age, there is effect which carries out abundant generation of the ettringite which is an expansion nature mineral, and compensates for contraction with a chemical prestress concept.

  • PDF