• Title/Summary/Keyword: GAs analysis

Search Result 9,076, Processing Time 0.041 seconds

Development of partial liquefaction system for liquefied natural gas carrier application using exergy analysis

  • Choi, Jungho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.5
    • /
    • pp.609-616
    • /
    • 2018
  • The cargo handling system, which is composed of a fuel gas supply unit and cargo tank pressure control unit, is the second largest power consumer in a Liquefied Natural Gas (LNG) carrier. Because of recent enhancements in ship efficiency, the surplus boil-off gas that remains after supplying fuel gas for ship propulsion must be reliquefied or burned to regulate the cargo tank pressure. A full or partial liquefaction process can be applied to return the surplus gas to the cargo tank. The purpose of this study is to review the current partial liquefaction process for LNG carriers and develop new processes for reducing power consumption using exergy analysis. The developed partial liquefaction process was also compared with the full liquefaction process applicable to a LNG carrier with a varying boil-off gas composition and varying liquefaction amounts. An exergy analysis showed that the Joule-Thomson valve is the key component needed for improvements to the system, and that the proposed system showed an 8% enhancement relative to the current prevailing system. A comparison of the study results with a partial/full liquefaction process showed that power consumption is strongly affected by the returned liquefied amount.

A Study on Failure Frequency Model for Risk Analysis of Natural Gas Pipeline with Comparison of Overseas Failure Data (국외 천연가스 배관 사고 빈도 비교 및 분석 모형에 관한 연구)

  • Oh, Shin-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.60-66
    • /
    • 2014
  • In this study, the overseas failure frequency data of the high-pressure gas pipeline were investigated to apply QRA of high-pressure gas pipeline. The typical overseas failure frequency data of high-pressure gas pipeline are DOT of United States, EGIG of Europe, and UKOPA of United Kingdom (UK). Comparative analysis of these data was shown that EGIG data was suitable for the situation in Korea. In order to apply QRA of high-pressure gas pipeline, non-linear regression analysis using the failure frequency data in the report of EGIG 8th was performed. In the future, intensive researches are required for the external interference because about 50% of the failure frequency of all incidents is the external interference, and for combining of domestic and overseas data.

Stress Analysis of Gas-Gas Heater in Thermal Power Plant (화력발전용 가스재열기의 응력 해석)

  • Hwang, Suk-Hwan;Choi, Jae-Seung;Lee, Hoo-Gwang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.204-211
    • /
    • 2002
  • Today\`s industrialized plants are required to reduce SOx emitted from stacks at factories, utility power stations, etc. For this purpose, flue gas desulfurization(FGD) system is installed in thermal power plant and gas-gas heater(GGH) is used to play a vital role to reheat the wet treated gas from FGD. The sector plates are located at cold and hot sides of gas-gas heater. They serve as sealing to prevent mixing treated and untreated gases. Therefore, the deformation of the sector plate due to its dead weight and gas pressure should be considered as major factor for the sector plate design. And finite element analysis(FEA) for rotor part in GGH is performed with original model and two weight-reduced models with different diaphragm thickness, respectively. Stress concentrations at rotor diaphragm happen due to the dead weight, pressure difference between treated and untreated gas, and thermal distribution in the rotor. As the thickness of diaphragm is decreased, the stress level is increased. The direction of treated gas and untreated gas flow may affect the stress level.

Off-design Performance Analysis based on Experimental Data of a Micro Gas Turbine Engine (실험데이터 기반 마이크로 가스터빈엔진 탈 설계점 성능해석)

  • Kim, Seungjae;Choi, Seongman;Rhee, Dongho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.64-71
    • /
    • 2018
  • It is essential to understand the characteristics of gas turbine components in order to carry out an off-design analysis of a gas turbine engine. In this study, a micro gas turbine engine test system was constructed to understand the performance characteristics of gas turbines. The temperature and pressure in the flow path of the micro gas turbine was collected by measuring the engine spool speed, and a compressor map was constructed by using the experimental data. The exhaust gas was collected at the turbine outlet and the combustion efficiency was calculated. An off-design performance analysis at ground static was performed using GasTurb software by applying the compressor map and combustion efficiency obtained from the experimental data. Futhermore, we compared and evaluated the analysis results with engine operating data.

Seismic AVO Analysis, AVO Modeling, AVO Inversion for understanding the gas-hydrate structure (가스 하이드레이트 부존층의 구조파악을 위한 탄성파 AVO 분석 AVO모델링, AVO역산)

  • Kim Gun-Duk;Chung Bu-Heung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.643-646
    • /
    • 2005
  • The gas hydrate exploration using seismic reflection data, the detection of BSR(Bottom Simulating Reflector) on the seismic section is the most important work flow because the BSR have been interpreted as being formed at the base of a gas hydrate zone. Usually, BSR has some dominant qualitative characteristics on seismic section i.e. Wavelet phase reversal compare to sea bottom signal, Parallel layer with sea bottom, Strong amplitude, Masking phenomenon above the BSR, Cross bedding with other geological layer. Even though a BSR can be selected on seismic section with these guidance, it is not enough to conform as being true BSR. Some other available methods for verifying the BSR with reliable analysis quantitatively i.e. Interval velocity analysis, AVO(Amplitude Variation with Offset)analysis etc. Usually, AVO analysis can be divided by three main parts. The first part is AVO analysis, the second is AVO modeling and the last is AVO inversion. AVO analysis is unique method for detecting the free gas zone on seismic section directly. Therefore it can be a kind of useful analysis method for discriminating true BSR, which might arise from an Possion ratio contrast between high velocity layer, partially hydrated sediment and low velocity layer, water saturated gas sediment. During the AVO interpretation, as the AVO response can be changed depend upon the water saturation ratio, it is confused to discriminate the AVO response of gas layer from dry layer. In that case, the AVO modeling is necessary to generate synthetic seismogram comparing with real data. It can be available to make conclusions from correspondence or lack of correspondence between the two seismograms. AVO inversion process is the method for driving a geological model by iterative operation that the result ing synthetic seismogram matches to real data seismogram wi thin some tolerance level. AVO inversion is a topic of current research and for now there is no general consensus on how the process should be done or even whether is valid for standard seismic data. Unfortunately, there are no well log data acquired from gas hydrate exploration area in Korea. Instead of that data, well log data and seismic data acquired from gas sand area located nearby the gas hydrate exploration area is used to AVO analysis, As the results of AVO modeling, type III AVO anomaly confirmed on the gas sand layer. The Castagna's equation constant value for estimating the S-wave velocity are evaluated as A=0.86190, B=-3845.14431 respectively and water saturation ratio is $50\%$. To calculate the reflection coefficient of synthetic seismogram, the Zoeppritz equation is used. For AVO inversion process, the dataset provided by Hampson-Rushell CO. is used.

  • PDF

Structural Analysis of Gas Generator Regenerative Cooling Chamber (재생냉각형 가스발생기 챔버 구조해석)

  • Ryu, Chul-Sung;Kim, Hong-Jip;Choi, Hwan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.1046-1052
    • /
    • 2007
  • Elastic-plastic structural analysis for regenerative cooling chamber of gas generator was performed. Uniaxial tension test was conducted for STS316L at room and high temperature conditions to get the material data necessary for the structural analysis of the chamber which was operated under thermal load and high internal pressure. Physical properties including thermal conductivity, specific heat and thermal expansion were also measured. The structural analysis for four different types of regenerative cooling chamber of gas generator revealed that increased cooling performance decreased the thermal load and strain of the cooling channel structure. The results propose that in order for the regenerative cooling gas generator chamber to have high structural stability with endurance to high mechanical and thermal loads, it is important for the chamber to be designed to have high cooling performance.

Study on Flow and Stress Analysis of Gas Turbine Blade (가스 터빈 블레이드의 유동 및 응력 해석에 관한 연구)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.67-72
    • /
    • 2011
  • Turbine blades operate under high temperature and pressure. The influence changes according to its width and angle. Thermal stress and pressure are important factors to analyze the stress distribution. The purpose of this study is to investigate the effects of loads on the gas turbine blade using thermal stress analysis. These analysis results show the gas fluid flow with a high pressure around the surface of blade. Gas temperature is related to the pressure of flow around the blade. The stress concentration around blade is shown and the concentration is due to the difference between suction side and pressure side of combustion gas.

Structural Analysis of Gas Generator Regenerative Cooling Chamber (가스발생기 재생냉각 챔버 구조해석)

  • Ryu, Chul-Sung;Choi, Hwan-Seok
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.802-807
    • /
    • 2007
  • Elastic-plastic structural analysis for regenerative cooling chamber of gas generator was performed. Uniaxial tension test was also conducted for STS316L at room and high temperature conditions to get the material data necessary for the structural analysis of the chamber which is operated under thermal load and high internal pressure. Physical properties including thermal conductivity, specific heat and thermal expansion data were also measured. The structural analysis for four different types of regenerative cooling chamber of gas generator revealed that increased cooling performance decreases the thermal load and strain of the cooling channel. The results propose that in order for the regenerative cooling gas generator chamber to have high structural stability with endurance to high mechanical and thermal loads, it is important for the chamber to be designed to have high cooling performance.

  • PDF

Analysis of a gas-particle direct-contact heat exchanger with two-phase radiation effect (복사효과를 고려한 기체-입자 직접접촉식 열교환기 해석)

  • Park, Jae-Hyeon;Baek, Seung-Uk;Gwan, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.542-550
    • /
    • 1998
  • A direct contact heat exchanger using particle-suspended gas as a heat transfer medium is analyzed with an extended emphasis on the radiation, i. e., considering the radiation by both gas and particles. While the Runge-Kutta method is used for a numerical analysis of the momentum and energy equations, the finite volume method is utilized to solve the radiative transfer equation. Present study shows a notable effect by the gas radiation in addition to the particle radiation, especially when changing the chamber length as well as the gas and particle mass flow rate. When the gas and particle mass flow rate is raised, the gas temperature in the particle heater still increases as the gas absorption coefficient increases, which is different from the results for the small scale heat exchanger.