• Title/Summary/Keyword: GAs analysis

Search Result 9,117, Processing Time 0.037 seconds

Field Empirical Result Analysis According to the Operation Reliability Test of the Wireless Gas Shut-off Device (무선가스 차단 장치 동작 신뢰성 시험에 따른 현장 실증 결과분석)

  • Hwang, Do-Yeon;Lee, Kyung-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.70-77
    • /
    • 2021
  • As IoT technology develops along with the 4th industrial revolution, gas safety products to which IoT technology is applied are being developed. However, since the gas safety system was not allowed, system improvement and operation reliability test for IoT gas safety products are required. This thesis researches IoT fuse cock and smart multi-function meter among IoT gas safety products, and analyzes the empirical data of IoT fuse cock to secure operational reliability data, thereby becoming a leader in IoT gas safety products. It aims to develop gas barrier technology one step further through various test evaluations and methods in the future.

Greenhouse Gas Emission Analysis by LNG Fuel Tank Size through Life Cycle

  • Park, Eunyoung;Choi, Jungho
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.393-402
    • /
    • 2021
  • As greenhouse gas emissions from maritime transport are increasing, the International Maritime Organization is continuously working to strengthen emission regulations. Liquefied natural gas (LNG) fuel is less advantageous as a point of CO2 reduction due to the methane leakage that occurs during the bunkering and operation of marine engines. In this study, greenhouse gas emissions from an LNG-fueled ship were analyzed from the perspective of the life cycle. The amount ofmethane emission during the bunkering and operation procedures with various boil-off gas (BOG) treatment methods and gas engine specifications was analyzed by dynamic simulation. The results were also compared with those of other liquid fuel engines. As a result, small LNG-fueled ships without a BOG treatment facility emitted 32% more greenhouse gas than ships utilizing marine gas oil or heavy fuel oil. To achieve a greenhouse gas reduction via a BOG treatment method, a gas combustion unit or re-liquefaction system must be mounted, which results in a greenhouse gas reduction effect of about 25% and 30%. As a result of comparing the amount of greenhouse gas generated according to the BOG treatment method used with each tank size from the perspective of the operating cycle with the amounts from using existing marine fuels, the BOG treatment method showed superior effects of greenhouse gas reduction.

An Predictive System for urban gas leakage based on Deep Learning (딥러닝 기반 도시가스 누출량 예측 모니터링 시스템)

  • Ahn, Jeong-mi;Kim, Gyeong-Yeong;Kim, Dong-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.41-44
    • /
    • 2021
  • In this paper, we propose a monitoring system that can monitor gas leakage concentrations in real time and forecast the amount of gas leaked after one minute. When gas leaks happen, they typically lead to accidents such as poisoning, explosion, and fire, so a monitoring system is needed to reduce such occurrences. Previous research has mainly been focused on analyzing explosion characteristics based on gas types, or on warning systems that sound an alarm when a gas leak occurs in industrial areas. However, there are no studies on creating systems that utilize specific gas explosion characteristic analysis or empirical urban gas data. This research establishes a deep learning model that predicts the gas explosion risk level over time, based on the gas data collected in real time. In order to determine the relative risk level of a gas leak, the gas risk level was divided into five levels based on the lower explosion limit. The monitoring platform displays the current risk level, the predicted risk level, and the amount of gas leaked. It is expected that the development of this system will become a starting point for a monitoring system that can be deployed in urban areas.

  • PDF

A Study on the Characteristics of an Externally Pressurized Conical Gas Bearing (외부가압 원추형 공기베어링의 특성에 관한 연구)

  • 박상신;한동철
    • Tribology and Lubricants
    • /
    • v.7 no.1
    • /
    • pp.35-39
    • /
    • 1991
  • The performance of the ultra-precision machine tools depends on the steady state characteristics of the main spindle bearings. For excluding the effect of machining error with perpendicularity, conical or spherical bearing has been used. In this paper, steady analysis of the externally pressurized conical gas bearing for ultraprecision is carried out based on the direct numerical method with assumption of point source. As a result of theoretical analysis, design parameters for optimal condition of conical gas bearing are' presented in dimensionless form.

Thermodynamic analysis and economical optimization on various configuration of Gas Turbine Combined Cycle Power Plants (다양한 구성의 가스터빈 복합화력발전소에 대한 열역학적 해석과 경제적 최적화 연구)

  • Kim, Seungjin;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.225-228
    • /
    • 2012
  • Thermodynamic and economic analysis on various type of gas turbine combined cycle power plants was presented to build up the criteria for optimization of power plants. The efficiency considered about energy level difference between electricity and heat was introduced. The efficiency on power and heat generation of power plants whose have different purpose was estimated and power generation costs on various type of combined heat and power plants : fired/unfired, condensing/non-condensing mode, single/double pressure HRSG.

  • PDF

ANALYTICAL SOLUTION OF COUPLED RADIATION-CONVECTION DISSIPATIVE NON-GRAY GAS FLOW IN A NON-DARCY POROUS MEDIUM

  • Darvishi, Mohammad Taghi;Khani, Farzad;Aziz, Abdul
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1203-1216
    • /
    • 2010
  • The homotopy analysis method (HAM) has been applied to develop an analytic solution for the coupled radiation-convection dissipative non-gray gas flow in a non-Darcy porous medium. Results are presented for the surface shear and temperature profiles are presented to illustrate the effect of various parameters appearing in the analytical formulation. The accuracy and convergence of the method is also discussed.

Cost-Benefit Analysis for Safety Management Cost using Quantitative Risk Analysis (정량적 위험성 평가에 의한 안전관리 투자의 비용-편익분석)

  • 장서일;조지훈;김태옥
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.4
    • /
    • pp.15-26
    • /
    • 2002
  • The quantitative evaluation method of the safety management cost was suggested to prevent a gas accident as a major industrial accident. In a gas governor station, process risk assessments such as the fault tree analysis(FTA) and the consequence analysis were performed. Based on process risk assessments, potential accident costs were estimated and the cost-benefit analysis(CBA) was performed. From the cost-benefit analysis for five classification items of safety management cost, the order of the cost/benefit ratio was estimated.

Risk Analysis for Installation Types of Pressure Safety Valve used in the High-pressure Gas Facility (고압가스 사용시설 내 안전밸브 설치유형별 리스크 분석)

  • Kim, Myung-Chul;Woo, Jeong-Jae;Lee, Hyung-Sub;Baek, Jong-Bae
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.4
    • /
    • pp.129-136
    • /
    • 2017
  • This study investigated the probability of possible accident through qualitative and quantitative analysis of the pressure safety valve types installed in facilities using high pressure gas to compare the installation domestic and foreign pressure safety valve standards sought the safety characteristics and safety improvement direction accordingly. The three types are the case where the shut-off valve is not installed at the front of the PSV (Case A), If a shut-off valve is installed at the front of the PSV for inspection (Case B) and If a shut-off valve is installed in front of PSV (C.S.O), PSV is installed in parallel (Case C). Three types of cases were compared with FTA and HAZOP. The results of study of the possible accidents due to over-pressure safety valve installation type, used in a high-pressure gas facilities was shows in the following order Case B > Case A > Case C. The results of analysis through FTA was in order to protect the reservoir for the possible occurring of accident the safety valve installation is depend on its type. In the FTA analysis, defects in the device itself which attached to the storage tank as a substitute for analysis of the probability of operator mistakes was Case B with as high as $2.01{\times}10^{-6}$. Depending on the type of installation analysis of Case B in order to ensure safety is prohibited to install shut-off valve and believes that mandatory regulations are needed. Rationally installing of pressure safety valve in the high pressure using facilities will be expected to improve the industrial safety from severe accidents such as high-pressure gas fire explosion.

Performance Analysis of Gas Turbine for Large-Scale IGCC Power Plant

  • Joo, Yong-Jin;Kim, Mi-Yeong;Park, Se-Ik;Seo, Dong-Kyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.415-419
    • /
    • 2016
  • As the need for clean coal technology has grown, so has the global research and development efforts into integrated gasification combined cycle (IGCC) plants. An IGCC plant couples a gas turbine to a gasification block. Various technical and economic problems exist in designing such a system. One such problem is the difficulty in realizing economies of scale because the single-train flow capacity of commercial IGCC synthetic gas turbine plants is limited; the capacity does not exceed a net power rating of 300 MW. To address this problem, this study modeled and simulated a synthetic gas turbine with the goal of evaluating the feasibility of a 500 MW or larger IGCC plant. First, a gas turbine with the best output and efficiency was chosen for use with natural gas. The turbine was modeled using GateCycle (a simulation tool), and the integrity of the model validated by comparing the result to the design value. Next, off-design modeling was carried out for a gas turbine with synthetic gas based on its on-design model, and the result was compared with the study result of the gas turbine manufacturer. The simulation confirmed that it is possible to create a large capacity IGCC plant by undertaking the remodeling of a gas turbine designed to use natural gas into one suitable for synthetic gas.

DEVELOPMENT OF A CORE THERMO-FLUID ANALYSIS CODE FOR PRISMATIC GAS COOLED REACTORS

  • Tak, Nam-Il;Lee, Sung Nam;Kim, Min-Hwan;Lim, Hong Sik;Noh, Jae Man
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.641-654
    • /
    • 2014
  • A new computer code, named CORONA (Core Reliable Optimization and thermo-fluid Network Analysis), was developed for the core thermo-fluid analysis of a prismatic gas cooled reactor. The CORONA code is targeted for whole-core thermo-fluid analysis of a prismatic gas cooled reactor, with fast computation and reasonable accuracy. In order to achieve this target, the development of CORONA focused on (1) an efficient numerical method, (2) efficient grid generation, and (3) parallel computation. The key idea for the efficient numerical method of CORONA is to solve a three-dimensional solid heat conduction equation combined with one-dimensional fluid flow network equations. The typical difficulties in generating computational grids for a whole core analysis were overcome by using a basic unit cell concept. A fast calculation was finally achieved by a block-wise parallel computation method. The objective of the present paper is to summarize the motivation and strategy, numerical approaches, verification and validation, parallel computation, and perspective of the CORONA code.