• Title/Summary/Keyword: GAs analysis

Search Result 9,117, Processing Time 0.043 seconds

Development of Seismic Monitoring System for Natural Gas Governor Station and It's Field Application to Minimize Earthquake Damage (지진 피해 최소화를 위한 지진 감지 시스템 개발 및 현장적용 연구)

  • Yoo H.R.;Park S.S.;Park D.J.;Koo S.J.;Cho S.H.;Rho Y.W.
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.3 s.11
    • /
    • pp.19-25
    • /
    • 2000
  • In order to prevent secondary disaster such as gas explosion which comes after a devastating magnitude earthquake, the seismic monitoring and transmission system for natural gas governor station was developed. To measure ground motions precisely and operate the seismic monitoring system efficiently, the position and method of accelerometer installation were recommended by the analysis of ground noise patterns of governor station. For making a decision on prompt shut-off of gas supplies in the event of a great earthquake, the real-time calculation algorithm of PGA(Peak Ground Acceleration) and SI(Spectrum Intensity) were developed and it has been implemented in the seismic monitoring and transmission system.

  • PDF

Economic Analysis of Landfill Gas Recycling Considering Environmental Benefit (환경편익을 고려한 매립가스 자원화 사업의 경제성분석)

  • Kim, Young-Jun;Lee, Jong-Yeon;Koo, June-Mo;Kang, Yong-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.4
    • /
    • pp.181-188
    • /
    • 2010
  • The objectives of this study are to analyze the possibility of the landfill gas recycling for the middle and small scale landfills where the recycling facilities are not installed in Korea. It was found that the power generation plants by landfill gas were installed in domestic 15 landfills and the gas engine generation was adopted in 14 places. As the result of economic analysis, the landfill gas recycling is found to be available in 12 places and CERs of 153,693 $tCO_{2e}$ can be secured per year. Through the reduction of the air pollutants and VOCs, the social benefits of 730 million won accrue per year. Also, the power production of 18.8 GWh will substitute the crude oil imports of 4,048 TOE and the revenue of 2.49 billion won is expected to power trading. It is also found that the power generation plants by landfill gas will give the social benefits such as the reduction of the environmental problems and the substitution effect of crude oil imports.

Comparative Part Load Performance Analysis of Gas Turbine Power Generation Systems Considering Exhaust Heat Utilization (배열 이용도를 고려한 가스터빈 발전시스템의 부분부하 성능 비교분석)

  • Kim, T. S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.290-297
    • /
    • 2002
  • This paper presents analysis results for the effect of power control strategies on the part load performance of gas turbine based power generation systems utilizing exhaust heat of the gas turbine such as cumbined cycle power plants and regenerative gas turbines. For the combined cycle, part load efficiency variations were compared among different single shaft gas turbines representing various technology levels. Power control strategies considered were fuel only control and IGV control. It has been observed that gas turbines with higher design performances exhibit superior part load performances. Improvement of part load efficiency by adopting air flow modulation was analyzed and it is concluded that since the average combined cycle performance is affected by the range of IGV control as well as its temperature control principle, a control strategy appropriate for the load characteristics of the individual plant should be adopted. For the regenerative gas turbine, it is likewise concluded that maintaining exhaust temperature as high as possible by air flow rate modulation is required to increase part load efficiency.

  • PDF

A NUMERICAL STUDY ON THE FLOW CHARACTERISTICS OF GAS CHROMATOGRAPHIC COLUMN (가스 크로마토그래픽 컬럼의 유동특성에 대한 수치적 연구)

  • Kim T.-A.;Kim Youn J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.21-26
    • /
    • 2005
  • Gas Chromatography (GC) is a wisely technique used for the separation and analysis of liquid and gas sample. Separation of the sample vapors is achieved via their differential migration through a capillary column with an insert carrier gas. The identity and quantity of each vapor in the mixer can be determined from its retention time in the column and a particular property of the gas, such as thermal conductivity, which can be related to the concentration of sample vapor in the carrier gas. Therefore, the flow characteristics in the spiral gas chromatographic column are numerically investigated in this study. Especially, different pressure drop between the front and the rear of GC column with various flow rates is estimated the governing equations are derived from making using of three-dimensional Naver-Stokes equation with incompressible and laminar model due to the nature of low Reynolds number flow. Using a commercial code, FLUENT, the pressure and flow fields in GC column are calculated with various flow rates. The characteristics of thermal cycling which is one of the most important factors affecting the column efficiency and analysis time is also estimated. Furthermore, numerical analyses are also carried out by using commercial code, ANSYS, with various values of power, which is applied to the heating element located at lower GC column.

  • PDF

Comparative Part Load Performance Analysis of Gas Turbine Power Generation Systems Considering Exhaust Heat Utilization (배열 이용도를 고려한 가스터빈 발전시스템의 부분부하 성능 비교분석)

  • Kim, T.S.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.28-35
    • /
    • 2003
  • This paper presents analysis results for the effect of power control strategies on the part load performance of gas turbine based power generation systems utilizing exhaust heat of the gas turbine such as combined cycle power plants and regenerative gas turbines. For the combined cycle, part load efficiency variations were compared among different single shaft gas turbines representing various technology levels. Power control strategies considered were fuel only control and IGV control. It has been observed that gas turbines with higher design performances exhibit superior part load performances. Improvement of part load efficiency of the combined cycle by adopting air flow modulation was analyzed and it was concluded that since the average combined cycle performance is affected by the range of IGV control as well as its temperature control principle, a control strategy appropriate for the load characteristics of the individual plant should be adopted. For the regenerative gas turbine, it is likewise concluded that maintaining exhaust temperature as high as possible by air flow rate modulation is required to increase part load efficiency.

CFD-based Flow Simulation Study of Fuel Cell Protective Gas (CFD를 활용한 연료전지 모듈 보호가스 유동 연구)

  • Kwon, Kiwook;Lim, Jongkoo;Park, Jongcheol;Shin, Hyun Khil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.86.1-86.1
    • /
    • 2011
  • To improve the safety, the fuel cell operate inside a pressurized enclosure which contains inert gas so called protective gas. The protective gas not only prevents the mixture of hydrogen and oxygen, but also removes the water in the vessel with the condenser. This study presents the details of the flow optimization in order to reduce the humidity in the fuel cell housing. The protective gas flow in the fuel cell container is studied by Computational Fluid Dynamics(CFD) simulations. This study focuses on optimizing the geometry of an protective gas circulation system in fuel cell module to reduce the humidity in the vessel. CFD analysis was carried out for an existing model to understand the flow behavior through the fuel cell system. Based on existing model CFD results, geometrical changes like inlet placement, optimization of outlet size, modification of fuel cell module system are carried out, to improve the flow characteristics. The CFD analysis of the optimized model is again carried out and the results show good improvement in protective gas flow behavior.

  • PDF

Qualitative Human Error Assessment for Gas Facilities (가스시설에서의 정성적 인적오류 평가)

  • Yoon Ik-Keun;Ha Jong-Mann;Oh Shin-kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.3
    • /
    • pp.70-77
    • /
    • 1998
  • This study proposes a method to facilitate the identification of human error in calling out such qualitative risk assessment in Gas plants. The main idea of this method is based on the scheme of existing qualitative risk assesment technique. The guidewords and tabular worksheet are suggested to be compatible in human error analysis. By using this method developed, the maintenance procedure of Governor system in gas valve station was analyzed to discover the human error in maintenance tasks. As a consequence, certain human errors were identified and the suggested approches proved to be adequate technique for the human error analysis.

  • PDF

A Study on the Unified Molding of a Portable Cosmetic Chest Using Gas-Assisted Injection Molding (가스사출성형을 이용한 휴대용 화장품 보관함의 일체화 성형 연구)

  • Lee, Ho-Sang;Ryu, Yeon-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.772-777
    • /
    • 2001
  • The gas-assisted injection molding process is often perceived to be unpredictable, because of the extreme sensitivity of the gas. Since a slight change in design or process parameters can significantly change the resulting gas penetration, few designers and molders have the level of experience with the new gas-assisted injection molding process required for the development of new parts. This paper is concerned with the unified molding for a thick cosmetic chest by using gas-assisted injection molding. CAE analysis was carried out to design the part and the gas channel without inducing sink marks. And based on the part weight measurement, the processing parameters to control gas penetration percentage were chosen through the method of design of experiments. A thick cosmetic chest was successfully produced using the gas assist technology. The sink mark issue associated with the conventional injection molded parts was resolved. Weight savings and cycle-time reduction were also achieved.

  • PDF

A Study on the Unified Molding for a Box Shaped Thick Part Using Gas-Assisted Injection Molding (가스사출성형을 이용한 두꺼운 박스형 제품의 일체화 성형 연구)

  • 이호상
    • Transactions of Materials Processing
    • /
    • v.10 no.5
    • /
    • pp.402-410
    • /
    • 2001
  • The gas-assisted injection molding process is often perceived to be unpredictable, because of the extreme sensitivity of the gas. Since a slight change in design or process parameters can significantly change the resulting gas penetration, few designers and molders have the level of experience with the new gas-assisted injection molding process required for the development of new parts. This paper is concerned with the unified molding for a thick cosmetic chest by using gas-assisted injection molding. CAE analysis was carried out to design the part and the gas channel without inducing sink marks. And based on the part weight measurement, the processing parameters to control gas penetration percentage were chosen through the method of design of experiments. A thick cosmetic chest was successfully produced using the gas assist technology. The sink mark issue associated with the conventional injection molded parts was resolved. Weight savings and cycle-time reduction were also achieved.

  • PDF

Development of a Gas Assisted Injection Molding Process for Exterior Display Panels (디스플레이용 외장패널의 가스사출공정 개발)

  • Choi, D.S.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.36-41
    • /
    • 2012
  • Gas Assisted Injection Molding is a relatively new low-pressure injection molding technique that provides benefits such as reduced part warpage, excellent surface quality without shrink marks, greater design flexibility, etc. In the gas assisted injection molding process, the injected pressurized nitrogen gas flows through designed gas channels and forms hollow sections within the part. However, due to the characteristics of the gas, the design of the gas channels which are the paths for the injected gas is important in order to avoid defects such as gas blowout, fingering, etc. Therefore, in this study, the gas channel design for gas assisted injection molding of exterior display panels was conducted by examining the results of three CAE analyses. The designed gas channel was verified by conducting tryouts using a 450 ton injection molding machine with 3-stage pressure controlled gas kit. In addition, the hollow shapes which were formed by the gas with the installed gas channels were examined by examining the cross sections of the prototypes that were produced. As a result, it was found that exterior display panels can be produced without any defect by applying the gas assisted injection molding technique.