• Title/Summary/Keyword: GAs analysis

Search Result 9,117, Processing Time 0.041 seconds

Analysis of Heat Flow and Deformation in Laser Welding of Small Gas Pressure vessel (소형 가스용기 레이저 용접부의 열유동 및 변형해석에 관한 연구)

  • 박상국;김재웅;김기철
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.104-111
    • /
    • 2001
  • This study presents an analysis method for heat flow and deformation of sheet metal laser welding. A heat source model for 2-dimensional heat flow analysis of laser welding process was suggested in this paper. To investigate the availability of the heat source model, the analysis results were compared and estimated with the results of previous researches. We could get a good agreement between the results of numerical analysis and experiments in the temperature distribution of weldment. Due to the characteristics of welding process, some kinds of deformations are usually generated in a welded structure. Generally, the degree of deformation is dependent on the welding sequence constraints as well as input power Therefore, in this paper we evaluate the deformation of gas pressure vessel according to the welding sequence and input power. In the analysis of weld deformation, 2-dimensional thermo-elasto-plastic analysis was performed for the gas pressure vessel by using a commercial FE program package.

  • PDF

A Numerical Analysis of Flow Characteristics in a Heat Recovery Steam Generator with the Change of Inlet Flow Conditions (배열회수보일러(HRSG)의 입구유동 경계조건에 따른 유동특성 변화에 관한 연구)

  • Kim, Tae-Kwon;Lee, Boo-Yoon;Ha, Ji-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.53-57
    • /
    • 2011
  • The present study has been carried out to analyze the flow characteristics of a heat recovery steam generator with the change of inlet flow conditions by using numerical flow analysis. The inlet of HRSG corresponds the outlet of gas turbine exit and the flow after gas turbine has strong swirl flow and turbulence. The inlet flow condition of HRSG should be included the exit flow characteristics of gas turbine. The present numerical analysis adopted the flow analysis result of gas turbine exit flow as a inlet flow condition of HRSG analysis. The computational flow analysis result of gas turbine exit shows that the maximum axial velocity appears near circular duct wall and the maximum turbulent kinetic energy and dissipation rate exist relatively higher gradient region of axial velocity. The comparison of flow analysis will be executed with change of inlet turbulent flow condition. The first case is using the inlet turbulent properties from the result of computational analysis of gas turbine exit flow, and the second case is using the assumed turbulent intensity with the magnitude proportional to the velocity magnitude and length scale. The computational results of flow characteristics for two cases show great difference especially in the velocity field and turbulent properties. The main conclusion of the present study is that the flow inlet condition of HRSG should be included the turbulent properties for the accurate computational result of flow analysis.

Analysis of Check Valve Seal for CNG Vehicle Fuel Supply Line (CNG차량의 연료공급라인용 Check Valve Seal의 거동해석)

  • Yoo, Jae-Chan;Yeo, Kyeong-Mo;Kang, Byeong-Roo;Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.22 no.6
    • /
    • pp.329-334
    • /
    • 2006
  • In CNG (Compressed natural gas) fuel supply line, whose main components are receptacle and check valve are used to charge high pressure gas to the tank of NGV (Natural gas vehicle). It is reported that the seal is separated occasionally form valve seat and results in blockage of gas flow. In this paper, MARC is used to investigate the reasons of seal separation and suggest design improvements. The static gas pressure distributions acting on the seal which calculated using FLUENT are considered to investigate accurate seal deformation behaviors. Deformed seal shapes are obtained for various amounts of seal interference and its location, gas pressure distributions and Young's modulus of the rubber used. The results showed that the reasons of seal separation problems are verified theoretically, and suggested examples of new design method. Therefore the present numerical methods can be applied in designing and performance analysis of rubber seals adopted in high pressure fluid machineries.

A Study on the Effects of Consumer Satisfaction on Loyalty According to Involvement - Focused on the Gas Station Service - (서비스 관여도에 따른 소비자 만족이 충성도에 미치는 영향 - 주유소 서비스를 중심으로 -)

  • Lee, A-Reum;Huh, Eun-Jeong;Jeon, Hyung-Ran
    • Korean Journal of Human Ecology
    • /
    • v.21 no.2
    • /
    • pp.241-256
    • /
    • 2012
  • Gas station consumers have become increasingly conscious of expanding choices and service options available at retail outlets. The purpose of this study was to determine key factors in customer choice of gas / service stations. This study seeks to identify key the relationship between socio-demographical variables and consumer choice, and consumer satisfaction and loyalty associated with gas / service station usage. The research instrument comprised of a questionnaire in the form of an on-line survey that was administered during November, 2010. A Total of 1,000 questionnaires were used in the final analysis. The collected data were treated with SPSS Windows 18.0 and analyzed in for frequency, percentage, mean, standard deviation, pearson's correlation analysis, and multiple regression analysis. The results of were as following: First, there was a strong positive relationship between involvement, satisfaction, loyalty of gas station service. Second, satisfaction was significantly affected by involvement, the frequency of gasoline purchases, the information route and customer's occupation. Third, loyalty was significantly affected by consumer satisfaction, involvement, frequency of gasoline purchases, information route and customer's occupation.

Finite Element Analysis of Stress Behaviour Characteristics in Gas Pressure Vessels (가스압력용기의 응력거동특성에 관한 유한요소해석)

  • Kim Chung Kyun;Cho Seung Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.3 s.20
    • /
    • pp.58-64
    • /
    • 2003
  • This paper presents design safety analysis of pressure vessels. The gas pressure and thermal loads are applied to the pressure vessel simultaneously. In this study, ASME Sec. VIII Div. 2 code was accepted for the safety design of high-pressure vessel. And this result was analyzed using a coupled thermal-mechanical FEM analysis technique. The FEM computed result shows that ASME design code may not guarantee for combined loads of high gas pressure and thermal loads. And solid pressure vessel may be safe compared to other pressure vessels with supporting rings round the cylinder body.

  • PDF

Qualitative Hazard Analysis for LNG Gas Stations Using K-PSR Method (K-PSR을 이용한 LNG 충진소에 대한 정성적 위험성평가)

  • Ko, Jae-Wook;Lee, Jae-Min;Yoo, Jin-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.63-69
    • /
    • 2006
  • With the increased interest in reducing air pollution, supply of natural gas for gas vehicles is increasing. Thus, the number of establishments of LNG and CNG stations is increasing as well. However, due to major gas accidents such as the fire and explosion accident of a Bucheon LPG station in 1998, it is difficult to establish a new station. In this research, we conducted qualitative hazard analysis fer LCNG/LNG multi-station by using the K-PSR method and proposed recommendations for hazard mitigation.

  • PDF

CORROSION OF STEEL GAS PIPELINE INDUCED BY SULFATE-REDUCING BACTERIA IN ANAEROBIC SOIL (혐기성 토양에 서식하는 황산염환원세균에 의한 가스배관의 미생물부식)

  • Li SeonYeob;Jeon KyungSoo;Kho YoungTai;Kang Tak
    • 한국가스학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.58-68
    • /
    • 2001
  • Microbiologically influenced corrosion (MIC) of carbon steel gas pipeline in soil environments was investigated at field and laboratory MIC is very severe corrosion and it is not easy to distinguish this corrosion from Inorganic corrosion because of its localized, pitting-type character Therefore, it is important to provide proper assessment techniques for the prediction, detection, monitoring and mitigation of MIC. It is possible to predict the MIC risk, i.e., the activity of sulfate-reducing bacteria (SRB) through the analysis of soil environments. Chemical, microbiological and surface analysis of corrosion products and metal attacked could reveal the possibility of the occurrence of MIC. Various electrochemical and surface analysis techniques could be used for the study of MIC. Among these techniques, thin-film electrical resistance (ER) type sensors are promising to obtain localized corrosion rate of MIC induced by SRB. It is also important to study the effect of cathodic protection (CP) on the MIC In case of coated pipeline, the relationship between coating disbondment and the activity of SRB beneath the disbanded coating is also important.

  • PDF

Analysis for Correlation Between Furfural and CO, CO2 Gas Dissolved Inside Insulating Oil using Linear Regression Method (선형회귀법을 이용한 절연유에 용존된 furfural과 CO, CO2 가스 함유량 간의 상관관계 분석)

  • Kim, Jae-Hoon;Park, Doo-Gie;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.212-217
    • /
    • 2010
  • When paper which was applied as insulation in oil-filled transformer was aged by thermal, its electrical, mechanical and chemical characteristics were changed and deteriorated. Therefore operating temperature was more higher, damage of paper was more quicker. Insulating paper which was generally made with cellulose was degraded, polymer of long length chain was decomposed as a monomer and CO, $CO_2$ gas and/or by-product such as furfural was produced from paper at the same time. In according with detection these gas and furfural by dissolved gas analysis(DGA) and high performance liquid chromatography(HPLC), we have investigated effects of CO, $CO_2$ gas and furfural on insulation of paper. Also we have analyzed for correlation between furfural and CO, $CO_2$ gas using linear regression method that was known as useful, credible statistical analysis.

Development of Accelerated Life Test Method for Constant Electrical Potential Electrolysis Gas Sensor (정전위 전해식 가스센서의 가속수명시험법 개발)

  • Yang, Il Young;Kang, Jun Gu;Yu, Sang Woo;Oh, Geun Tae;Na, Yoon Gyoon
    • Journal of Applied Reliability
    • /
    • v.16 no.3
    • /
    • pp.180-191
    • /
    • 2016
  • Purpose: The purpose of this study was to develop the accelerated life test method for Constant Electrical Potential Electrolysis gas sensor (CEPE gas sensor). Methods: The parts and modules of CEPE gas sensor were analyzed by using Reliability Block Diagram (RBD). Failure Mode and Effect Analysis (FMEA) and Quality Function Deployment (QFD) methods were performed for each part to determine the most affecting stress factor in its life cycle. The long term testing was conducted at three different dry heat levels and the acceleration factor was developed by using Arrhenius relationship. Conclusion: The acceleration factor for CEPE gas sensor was developed by using FMEA, QFD, and statistical analysis for its failure data. Also qualification tests were designed to meet the target life.

A Study on the Reliability of Failure Diagnosis Methods of Oil Filled Transformer using Actual Dissolved Gas Concentration (유중가스농도를 이용한 유입식 변압기 고장진단 기법의 신뢰성에 관한 연구)

  • Park, Jin-Yeub;Chin, Soo-Hwan;Park, In-Kyoo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.3
    • /
    • pp.114-119
    • /
    • 2011
  • Large Power transformer is a complex and critical component of power plant and consists of cellulosic paper, insulation oil, core, coil etc. Insulation materials of transformer and related equipment break down to liberate dissolved gas due to corona, partial discharge, pyrolysis or thermal decomposition. The dissolved gas kinds can be related to the type of electrical faults, and the rate of gas generation can indicate the severity of the fault. The identities of gases being generated are using very useful to decide the condition of transformation status. Therefore dissolved gas analysis is one of the best condition monitoring methods for power transformer. Also, on-line multi-gas analyzer has been developed and installed to monitor the condition of critical transformers. Rogers method, IEC method, key gas method and Duval Triangle method are used to failure diagnosis typically, and those methods are using the ratio or kinds of dissolved gas to evaluate the condition of transformer. This paper analyzes the reliability of transformer diagnostic methods considering actual dissolved gas concentration. Fault diagnosis is performed based on the dissolved gas of five transformers which experienced various fault respectively in the field, and the diagnosis result is compared with the actual off-line fault analysis. In this comparison result, Diagnostic methods using dissolved gas ratio like Rogers method, IEC method are sometimes fall outside the ratio code and no diagnosis but Duval triangle method and Key gas method is correct comparatively.