• Title/Summary/Keyword: GATE simulation

Search Result 957, Processing Time 0.037 seconds

The Optimal Operation on Auxiliary Spillway to Minimize the Flood Damage in Downstream River with Various Outflow Conditions (하류하천의 영향 최소화를 위한 보조 여수로 최적 활용방안 검토)

  • Yoo, Hyung Ju;Joo, Sung Sik;Kwon, Beom Jae;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.2
    • /
    • pp.61-75
    • /
    • 2021
  • Recently, as the occurrence frequency of sudden floods due to climate change increased and the aging of the existing spillway, it is necessary to establish a plan to utilize an auxiliary spillway to minimize the flood damage of downstream rivers. Most studies have been conducted on the review of flow characteristics according to the operation of auxiliary spillway through the hydraulic experiments and numerical modeling. However, the studies on examination of flood damage in the downstream rivers and the stability of the revetment according to the operation of the auxiliary spillway were relatively insufficient in the literature. In this study, the stability of the revetment on the downstream river according to the outflow conditions of the existing and auxiliary spillway was examined by using 3D numerical model, FLOW-3D. The velocity, water surface elevation and shear stress results of FLOW-3D were compared with the permissible velocity and shear stress of design criteria. It was assumed the sluice gate was fully opened. As a result of numerical simulations of various auxiliary spillway operations during flood season, the single operation of the auxiliary spillway showed the reduction effect of maximum velocity and the water surface elevation compared with the single operation of the existing spillway. The stability of the revetment on downstream was satisfied under the condition of outflow less than 45% of the design flood discharge. However, the potential overtopping damage was confirmed in the case of exceeding the 45% of the design flood discharge. Therefore, the simultaneous operation with the existing spillway was important to ensure the stability on design flood discharge condition. As a result of examining the allocation ratio and the total allowable outflow, the reduction effect of maximum velocity was confirmed on the condition, where the amount of outflow on auxiliary spillway was more than that on existing spillway. It is because the flow of downstream rivers was concentrated in the center due to the outflow of existing spillway. The permissible velocity and shear stress were satisfied under the condition of less than 77% of the design flood discharge with simultaneous operation. It was found that the flood damage of downstream rivers can be minimized by setting the amount allocated to the auxiliary spillway to be larger than the amount allocated to the existing spillway for the total outflow with simultaneous operation condition. However, this study only reviewed the flow characteristics around the revetment according to the outflow of spillway under the full opening of the sluice gate condition. Therefore, the various sluice opening conditions and outflow scenarios will be asked to derive more efficient utilization of the auxiliary spillway in th future.

Installation Standards of Urban Deep Road Tunnel Fire Safety Facilities (도심부 대심도 터널의 방재시설 설치 기준에 관한 연구(부산 승학터널 사례를 중심으로))

  • Lee, Soobeom;Kim, JeongHyun;Kim, Jungsik;Kim, Dohoon;Lim, Joonbum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.727-736
    • /
    • 2021
  • Road tunnel lengths are increasing. Some 1,300 tunnels with 1,102 km in length had been increased till 2019 from 2010. There are 64 tunnels over 3,000 m in length, with their total length adding up to 276.7 km. Safety facilities in the event of a tunnel fire are critical so as to prevent large-scale casualties. Standards for installing disaster prevention facilities are being proposed based on the guidelines of the Ministry of Land, Infrastructure and Transport, but they may be limited to deep underground tunnels. This study was undertaken to provide guidelines for the spacing of evacuation connection passages and the widths of evacuation connection doors. Evacuation with various spacing and widths was simulated in regards to evacuation time, which is the measure of safety, using the evacuation analysis simulation software EXODUS Ver.6.3 and the fire/smoke analysis software SMARTFIRE Ver.4.1. Evacuation connection gates with widths of 0.9 m and 1.2 m, and spacings of 150 m to 250 m, were set to every 20 m. In addition, longitudinal slopes of 6 % and 0 % were considered. It was determined to be safe when the evacuation completion time was shorter than the delay diffusion time. According to the simulation results, all occupants could complete evacuation before smoke spread regardless of the width of the evacuation connection door when the longitudinal slope was 6 % and the interval of evacuation connection passage was 150 m. When the evacuation connection passage spacing was 200 m and the evacuation connection gate width was 1.2 m, all occupants could evacuate when the longitudinal slope was 0 %. Due to difference in evacuation speed according to the longitudinal slope, the evacuation time with a 6 % slope was 114 seconds shorter (with the 190 m connection passage) than with a 0 % slope. A shorter spacing of evacuation connection passages may reduce the evacuation time, but this is difficult to implement in practice because of economic and structural limitations. If the width of the evacuation junction is 1.2 m, occupants could evacuate faster than with a 0.9 m width. When the width of a connection door is 1.2 m with appropriate connection passage spacing, it might provide a means to increase economic efficiency and resolve structural limitations while securing evacuation safety.

Analysis and modeling of thermal resistance of multi fin/finger FinFETs (멀티 핀/핑거 FinFET 트랜지스터의 열 저항 해석과 모델링)

  • Jang, MoonYong;Kim, SoYoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.39-48
    • /
    • 2016
  • In this paper, we propose thermal resistance compact model of FinFET structure that has hexagon shaped source/drain. The heating effect and thermal properties were increased by reduced size of the device, and thermal resistance is an important factor to analyze the effect and the properties. The heat source and each contact that is moved heat out were set up in transistor, and domain is divided by the heat source and the four parts of contacts : source, drain, gate, substrate. Each contact thermal resistance model is subdivided as a easily interpretable structure by analyzing the temperature and heat flow of the TCAD simulation results. The domains are modeled based on an integration or conformal mapping method through the structure parameters according to its structure. First modeled by analyzing the thermal resistance to a single fin, and applying the change in the parameter of the channel increases to improve the accuracy of the thermal resistance model of the multi-fin/ finger. The proposed thermal resistance model was compared to the thermal resistance by analyzing results of the 3D Technology CAD simulations, and the proposed total thermal resistance model has an error of 3 % less in single and multi-finl. The proposed thermal resistance model can predict the thermal resistance due to the increase of the fin / finger, and the circuit characteristics can be improved by calculating the self-heating effect and thermal characterization.

Analysis on the Discharge Capacity Improvement of the Lock Gate Type by Using the 3-Dimensional Numerical Simulation (3차원 수치모의를 이용한 배수갑문의 형상변화에 따른 방류능력 개선효과 분석)

  • Lee Jong Hyun;Lee Kil Seong;Kim Dae Geun;Choi Won Suk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1058-1062
    • /
    • 2005
  • 통상 방조제 배수갑문의 방류능력은 위어공식 또는 오리피스공식을 이용하여 산정하는데, 이 경우 지형특성, 배수갑문 형상에 따른 흐름의 간섭현상, 유입부와 유출부의 형상 등이 방류량에 미치는 영향을 고려하지 못한다. 본 연구에서는 도류벽, 배수문, 물받이 등 방조제 배수갑문의 형상과 배치가 방류량에 미치는 영향을 상용 프로그램인 FLOW-3D를 이용하여 정량적으로 해석하였다. 이를 통해 배수갑문의 방류능력과 유황을 개선할 수 있는 방안을 도출하였다. 본 연구에서는 시화조력발전소를 대상으로 배수갑문의 방류능력 개선에 3차원 수치모의가 효과적으로 적용될 수 있음을 보였다. 본 연구에서 도출한 주요 결론은 다음과 같다. 1) 유출부측의 물받이길이를 40 m 증가시킴에 따라 전체 방류량은 계획안에 비해 약 $10\% 증가하는 것으로 나타났다. 2) 물받이 끝과 원지반의 연결부 사면을 1:1에서 1:5의 완경사로 변화시킴에 따라 전체 방류량은 약 $2\%$ 증가하는 것으로 나타났다. 3) 배수문과 수차발전 구조물 사이의 유선형 연결구조물을 제거함에 따라 전체 방류량은 약 $3\%$ 증가하는 것으로 나타났다. 4) 도류벽의 접근각도를 $10^{\circ}$ 감소시키거나 증가시킴에 따라 전체 방류량은 약 $5\% 감소 또는 증가하는 것으로 나타났다. 본 연구는 배수갑문의 설계시 방류능력 개선을 위해서는 수리학적 검토가 필요하며 수치모형실험이 수리모형실험과 더불어 유용한 해석도구로 이용될 수 있음을 보인 것으로, 이후 관련 구조물의 설계시 참고자료로 이용 가능할 것으로 사료된다.다. 실험 결과, Escarameia와 May가 제안한 공식을 더 확장하여 적용할 수 있는 실험 공식으로 개선하였으며 다양한 조건에 대한 실험을 수행하여 보다 정밀한 공식으로 개선할 수 있었다.$10,924m^3/s$ 및 $10,075m^3/s$로서 실험 I의 $2,757m^3/s$에 비해 통수능이 많이 개선되었음을 알 수 있다.함을 알 수 있다. 상수관로 설계 기준에서는 관로내 수압을 $1.5\~4.0kg/cm^2$으로 나타내고 있는데 $6kg/cm^2$보다 과수압을 나타내는 경우가 $100\%$로 밸브를 개방하였을 때보다 $60\%,\;80\%$ 개방하였을 때가 더 빈번히 발생하고 있으므로 대상지역의 밸브 개폐는 $100\%$ 개방하는 것이 선계기준에 적합한 것으로 나타났다. 밸브 개폐에 따른 수압 변화를 모의한 결과 밸브 개폐도를 적절히 유지하여 필요수량의 확보 및 누수방지대책에 활용할 수 있을 것으로 판단된다.8R(mm)(r^2=0.84)$로 지수적으로 증가하는 경향을 나타내었다. 유거수량은 토성별로 양토를 1.0으로 기준할 때 사양토가 0.86으로 가장 작았고, 식양토 1.09, 식토 1.15로 평가되어 침투수에 비해 토성별 차이가 크게 나타났다. 이는 토성이 세립질일 수록 유거수의 저항이 작기 때문으로 생각된다. 경사에 따라서는 경사도가 증가할수록 증가하였으며 $10\% 경사일 때를 기준으로 $Ro(mm)=Ro_{10}{\times}0.797{\times}e^{-0.021s(\

  • PDF

Dynamic Bandwidth Allocation Algorithm with Two-Phase Cycle for Ethernet PON (EPON에서의 Two-Phase Cycle 동적 대역 할당 알고리즘)

  • Yoon, Won-Jin;Lee, Hye-Kyung;Chung, Min-Young;Lee, Tae-Jin;Choo, Hyun-Seung
    • The KIPS Transactions:PartC
    • /
    • v.14C no.4
    • /
    • pp.349-358
    • /
    • 2007
  • Ethernet Passive Optical Network(EPON), which is one of PON technologies for realizing FTTx(Fiber-To-The-Curb/Home/Office), can cost-effectively construct optical access networks. In addition, EPON can provide high transmission rate up to 10Gbps and it is compatible with existing customer devices equipped with Ethernet card. To effectively control frame transmission from ONUs to OLT EPON can use Multi-Point Control Protocol(MPCP) with additional control functions in addition to Media Access Control(MAC) protocol function. For EPON, many researches on intra- and inter-ONU scheduling algorithms have been performed. Among the inter-ONU scheduling algorithms, IPS(Interleaved Polling with Stop) based on polling scheme is efficient because OLT assigns available time portion to each ONU given the request information from all ONUs. Since the IPS needs an idle time period on uplink between two consecutive frame transmission periods, it wastes time without frame transmissions. In this paper, we propose a dynamic bandwidth allocation algorithm to increase the channel utilization on uplink and evaluate its performance using simulations. The simulation results show that the proposed Two-phase Cycle Danamic Bandwidth Allocation(TCDBA) algorithm improves the throughput about 15%, compared with the IPS and Fast Gate Dynamic Bandwidth Allocation(FGDBA). Also, the average transmission time of the proposed algorithm is lower than those of other schemes.

Assessment of Water Distribution and Irrigation Efficiency in Agricultural Reservoirs using SWMM Model (SWMM 모형을 이용한 농업용 저수지 용수분배 모의 및 관개효율 평가)

  • Shin, Ji-Hyeon;Nam, Won-Ho;Bang, Na-Kyoung;Kim, Han-Joong;An, Hyun-Uk;Do, Jong-Won;Lee, Kwang-Ya
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.3
    • /
    • pp.1-13
    • /
    • 2020
  • The management of agricultural water can be divided into management of agricultural infrastructure and operation to determine the timing and quantity of water supply. The target of water management is classified as water-supply facilities, such as reservoirs, irrigation water supply, sluice gate control, and farmland. In the case of agricultural drought, there is a need for water supply capacity in reservoirs and for drought assessment in paddy fields that receive water from reservoirs. Therefore, it is necessary to analyze the water supply amount from intake capacity to irrigation canal network. The analysis of the irrigation canal network should be considered for efficient operation and planning concerning optimized irrigation and water allocation. In this study, we applied a hydraulic analysis model for agricultural irrigation networks by adding the functions of irrigation canal network analysis using the SWMM (Storm Water Management Model) module and actual irrigation water supply log data from May to August during 2015-2019 years in Sinsong reservoir. The irrigation satisfaction of ponding depth in paddy fields was analyzed through the ratio of the number of days the target ponding depth was reached for each fields. This hydraulic model can assist with accurate irrigation scheduling based on its simulation results. The results of evaluating the irrigation efficiency of water supply can be used for efficient water distribution and management during the drought events.

Optimization Condition for Injection Molding of TV Speaker Grille Using CAE (CAE를 이용한 TV Speaker Grille 사출 성형의 최적화)

  • 김범호;장우진;김정훈;정지원;박영훈
    • Polymer(Korea)
    • /
    • v.25 no.6
    • /
    • pp.855-865
    • /
    • 2001
  • The optimization condition of injection molding for a commercial product of TV speaker grille of A Company was induced using a CAE software of Moldflow. The flow and packing phase analysis was performed by using flow balance, runner balance, and the intermediate one by using the above two balances, which were used for controlling the amount of packing resins into the cavity, Later, the analysis performed by using the measured viscosity (local database) at various shear rates and the results were compared with the computer simulation using the standard database. Flow balance induced minimized weld line resulted in a better appearance and physical properties of the were line, but exhibited a disadvantage of large deformation and gas formation due to over-packing of the molten resin in the center of the speaker grille. Runner balance improved the disadvantage of the flow balance by controlling the amount of molten resin injected from the gate, however resulted reduced mechanical properties and poor appearance of the weld line. However, the modified method induced from the flow and runner balance improved the disadvantages by changing the runner size. In addition, the analyses based on the local database and the standard database were compared. Although the measured viscosity was slightly higher and the temperature distribution was broader than the standard database, no distinct difference was obtained from the analysis using the two different databases.

  • PDF

The viterbi decoder implementation with efficient structure for real-time Coded Orthogonal Frequency Division Multiplexing (실시간 COFDM시스템을 위한 효율적인 구조를 갖는 비터비 디코더 설계)

  • Hwang Jong-Hee;Lee Seung-Yerl;Kim Dong-Sun;Chung Duck-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.2 s.332
    • /
    • pp.61-74
    • /
    • 2005
  • Digital Multimedia Broadcasting(DMB) is a reliable multi-service system for reception by mobile and portable receivers. DMB system allows interference-free reception under the conditions of multipath propagation and transmission errors using COFDM modulation scheme, simultaneously, needs powerful channel error's correction ability. Viterbi Decoder for DMB receiver uses punctured convolutional code and needs lots of computations for real-time operation. So, it is desired to design a high speed and low-power hardware scheme for Viterbi decoder. This paper proposes a combined add-compare-select(ACS) and path metric normalization(PMN) unit for computation power. The proposed PMN architecture reduces the problem of the critical path by applying fixed value for selection algorithm due to the comparison tree which has a weak point from structure with the high-speed operation. The proposed ACS uses the decomposition and the pre-computation technique for reducing the complicated degree of the adder, the comparator and multiplexer. According to a simulation result, reduction of area $3.78\%$, power consumption $12.22\%$, maximum gate delay $23.80\%$ occurred from punctured viterbi decoder for DMB system.

Circuit Modeling and Simulation of Active Controlled Field Emitter Array for Display Application (디스플레이 응용을 위한 능동 제어형 전계 에미터 어레이의 회로 모델링 및 시뮬레이션)

  • Lee, Yun-Gyeong;Song, Yun-Ho;Yu, Hyeong-Jun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.2
    • /
    • pp.114-121
    • /
    • 2001
  • A circuit model for active-controlled field emitter array(ACFEA) as an electron source of active-controlled field emission display(ACFED) has been proposed. The ACFEA with hydrogenated amorphous silicon thin-film transistor(a-Si:H TFT) and Spindt-type molibdenum tips (Spindt-Mo FEA) has been fabricated monolithically on the same glass. A-Si:H TFT is used as a control device of field emitters, resulting in stabilizing emission current and lowering driving voltage. The basic model parameters extracted from the electrical characteristics of the fabricated a-Si:H TFT and Spindt-Mo FEA were implemented into the ACFEA model with a circuit simulator SPICE. The accuracy of the equivalent circuit model was verified by comparing the simulated results with the measured one through DC analysis of the ACFEA. The transient analysis of the ACFEA showed that the gate capacitance of FEA along with the drivability of TFT strongly affected the response time. With the fabricated ACFEA, we obtained a response time of 15$mutextrm{s}$, which was enough to make 4bit/color gray scale with the pulse width modulation (PWM).

  • PDF

Study of the New Structure of Inter-Poly Dielectric Film of Flash EEPROM (Flash EEPROM의 Inter-Poly Dielectric 막의 새로운 구조에 관한 연구)

  • Shin, Bong-Jo;Park, Keun-Hyung
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.10
    • /
    • pp.9-16
    • /
    • 1999
  • When the conventional IPD (inter-poly-dielctrics) layer with ONO(oxide-nitride-oxide) structure was used in the Flash EEPROM cell, its data retention characteristics were significanfly degraded because the top oxide of the ONO layer was etched off due to the cleaning process used in the gate oxidation process for the peripheral MOSFETs. When the IPD layer with the ONON(oxide-nitride-oxide-nitride) was used there, however, its data retention characteristics were much improved because the top nitride of the ONON layer protected the top oxide from being etched in the cleaning process. For the modelling of the data retention characteristics of the Flash EEPROM cell with the ONON IPD layer, the decrease of the threshold voltage cue to the charge loss during the bake was here given by the empirical relation ${\Delta}V_t\; = \;{\beta}t^me^{-ea/kT}$ and the values of the ${\beta}$=184.7, m=0.224, Ea=0.31 eV were obtained with the experimental measurements. The activation energy of 0.31eV implies that the decrease of the threshold voltage by the back was dur to the movement of the trapped electrons inside the inter-oxide nitride layer. On the other hand, the results of the computer simulation using the model were found to be well consistent with the results of the electrical measurements when the thermal budget of the bake was not high. However, the latter was larger then the former in the case of the high thermal budger, This seems to be due to the leakage current generated by the extraction of the electrons with the bake which were injected into the inter-oxide niride later and were trapped there during the programming, and played the role to prevent the leakage current. To prevent the generation of the leakage current, it is required that the inter-oxide nitride layer and the top oxide layer be made as thin and as thick as possible, respectively.

  • PDF