• 제목/요약/키워드: GATA transcription factor

검색결과 40건 처리시간 0.026초

A Minor Transactivation Effect of GATA-3 on its Target Sites in the Extrachromosomal Status

  • Lee, Gap-Ryol
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권12호
    • /
    • pp.2056-2060
    • /
    • 2007
  • Transcription factor GATA-3 is the critical transcription factor for Th2 cell differentiation. In spite of its importance in Th2 cell differentiation, the molecular mechanism for its action in Th2 differentiation is poorly understood. Previous studies have suggested that GATA-3 may be involved in the chromatin remodeling in the Th2 cytokine locus. To determine whether GATA-3 exerts its effect on its target sites in the extrachromosomal status, cell transfection assay was performed. In this assay, 800 bp IL4 promoter-luciferase constructs linked with GATA-3 target sites were transfected into the M12 B cell line, D10 mouse Th2 cell lines, and human T lymphoma Jurkat cell lines with or without the GATA-3 expression vector. The GATA-3 effects on its target sites were minimal in the extrachromosomal status, supporting the previous propositions that GATA-3 functions at the chromatin level by remodeling chromatin structure.

Inhibition of Nelumbo nucifera Stamens-derived Kaempferol on FcεRI-mediated GATA-1 Expression

  • Shim, Sun-Yup
    • 한국미생물·생명공학회지
    • /
    • 제47권3호
    • /
    • pp.350-353
    • /
    • 2019
  • The transcription factor, GATA-1, plays an important role in the $Fc{\varepsilon}RI$ ${\alpha}$ chain expression in mast cells and basophils. This study was conducted to investigate the downregulation of the transcription factor GATA-1 by kaempferol isolated from Nelumbo nucifera stamens in $Fc{\varepsilon}RI$-mediated allergic reactions. Kaempferol inhibited $Fc{\varepsilon}RI$-mediated histamine release. Western blotting analysis and RT-PCR showed that the protein and mRNA expression of GATA-1 was suppressed by kaempferol in a dose-dependent manner. These results suggest that kaempferol may inactivate basophils by downregulating the $Fc{\varepsilon}RI$ ${\alpha}$ chain expression via the inhibition of the GATA-1 expression.

A Comparative Genome-Wide Analysis of GATA Transcription Factors in Fungi

  • Park, Jong-Sun;Kim, Hyo-Jeong;Kim, Soon-Ok;Kong, Sung-Hyung;Park, Jae-Jin;Kim, Se-Ryun;Han, Hyea-Young;Park, Bong-Soo;Jung, Kyong-Yong;Lee, Yong-Hwan
    • Genomics & Informatics
    • /
    • 제4권4호
    • /
    • pp.147-160
    • /
    • 2006
  • GATA transcription factors are widespread eukaryotic regulators whose DNA-binding domain is a class IV zinc finger motif in the form $CX_{2}CX_{17-20}CX_{2}C$followed by a basic region. In fungi, they act as transcriptional activators or repressors in several different processes, ranging from nitrogen source utilization to mating-type switching. Using an in-house bioinformatics portal system, we surveyed 50 fungal and 9 out-group genomes and identified 396 putative fungal GATA transcription factors. The proportion of GATA transcription factors within a genome varied among taxonomic lineages. Subsequent analyses of phylogenetic relationships among the fungal GATA transcription factors, as well as a study of their domain architecture and gene structure, demonstrated high degrees of conservation in type IVa and type IVb zinc finger motifs and the existence of distinctive clusters at least at the level of subphylum. The SFH1 subgroup with a 20-residue loop was newly identified, in addition to six well-defined subgroups in the subphylum Pezizomycotina. Furthermore, a novel GATA motif with a 2f-residue loop ($CX_{2}CX_{21}CX_{2}C$, designated 'zinc finger type IVc') was discovered within the phylum Basidiomycota. Our results suggest that fungal GATA factors might have undergone multiple distinct modes of evolution resulting in diversified cellular modulation in fungi.

심장과 뇌 발달에서 GATA6 유전자 발현 감소가 미치는 영향 (The Effects of the Expression of GATA Binding Protein 6 on Heart and Brain Development)

  • 서정원
    • 생명과학회지
    • /
    • 제25권11호
    • /
    • pp.1230-1234
    • /
    • 2015
  • GATA binding protein 6 (GATA6)는 초기 배반포 단계에서 발현이 시작되어, 심장, 췌장, 장 등의 분화와 발달에 중요한 유전자 발현을 조절하는 전사인자이다. 본 연구에서는 GATA6의 세포 분화와 개체 발달 과정에서의 역할을 마우스 배아줄기세포와 zebrafish를 이용하여 확인하였다. 먼저, 마우스 배아줄기세포를 박동하는 pacemaker 심근세포로 분화 유도하였다. RT-PCR을 실시하여 심근세포 분화 과정에서 GATA6 유전자 발현 변화를 확인한 결과, Gata6의 발현이 분화 4일째부터 증가함을 확인하였다. GATA6 유전자의 발현 증가는 심장 발달에 필수적인 전사인자인 NK2 homeobox 5 (Nkx2.5)나 myocyte enhancer factor 2C (MEF2C)의 발현 증가에 앞서 나타났다. GATA6 유전자가 발달 과정에 미치는 영향을 확인하기 위하여 GATA6의 morpholino를 zebrafish 배아에 microinjection하여 발생 변화를 관찰하였다. GATA6의 발현을 knockdown시킨 zebrafish의 심장은 크기가 감소하였고, 심박동률 또한 감소하였다. 한편, 뇌에서는 전체적인 뇌 퇴행이 관찰되었는데, acridine orange로 염색 한 결과, 뇌 전체에서의 세포사멸의 증가를 나타내었다. 흥미롭게도, GATA6의 발현 감소는 초기 bud 단계에서는 오히려 세포사멸을 감소시켰다. 본 연구는 심장과 뇌 발달에서의 GATA6 유전자의 중요성을 시사한다.

상백피에 의한 MC/9 비만세포의 활성 억제 조절 연구 (Suppressive effects of Morus alba Linne Root Bark (MRAL) on activation of MC/9 mast cells)

  • 이기전;김복규;길기정
    • 대한본초학회지
    • /
    • 제28권1호
    • /
    • pp.33-42
    • /
    • 2013
  • Objective : Morus alba Linne Root Bark (MRAL) is a medicinal herb in Korean Medicine, known for its anti-inflammatory and anti-allergic properties. However, its mechanisms of action and the cellular targets have not yet been found and the study was developed to investigate the allergic suppressive effect of MRAL. The purpose of this study is to investigate the allergic suppressive effects of MRAL on activation of MC/9 mast cells. Methods : Cytotoxic activity of MRAL (50, 100, 200, 400 ${\mu}g/mL$) on MC/9 mast cells measured using EZ-Cytox cell viability assay kit (WST reagent). The levels of interleukin-5 (IL-5), IL-13 and IL-4, IL-5, IL-6, IL-13 mRNA expression were measured by enzyme-linked immunosorbent assay (ELISA) and real-time PCR respectively. The expression of transcription factors such as GATA-1, GATA-2, NFAT, AP-1 and NF-${\kappa}B$ p65 DNA binding activity were measured by western blot and electrophoresis mobility shift assay (EMSA). Results : Our results indicated that MRAL (50 ${\mu}g/mL$, 100 ${\mu}g/mL$) significantly inhibited PMA/Ionomycin-induced production of IL-5 and IL-13 and the expression of IL-4, IL-5, IL-6 and IL-13 mRNA in MC/9 mast cells. Moreover, MRAL (50 ${\mu}g/mL$, 100 ${\mu}g/mL$) inhibited PMA/Ionomycin-induced GATA-1, GATA-2, NFAT-1, NFAT-2, c-Fos protein expression and NF-${\kappa}B$ p65 DNA binding activity in MC/9 mast cells. Conclusions : In conclusion, we suspect the anti-allergenic activities of MRAL, may be related to the regulation of transcription factors GATA-1, GATA-2, NFAT-1, NFAT-2, c-Fos and NF-${\kappa}B$ p65 DNA binding assay causing inhibition of Th2 cytokines IL-5 and IL-13 in mast cells.

Roles of RUNX1 and PU.1 in CCR3 Transcription

  • Su-Kang Kong;Byung Soo Kim;Sae Mi Hwang;Hyune Hwan Lee;Il Yup Chung
    • IMMUNE NETWORK
    • /
    • 제16권3호
    • /
    • pp.176-182
    • /
    • 2016
  • CCR3 is a chemokine receptor that mediates the accumulation of allergic inflammatory cells, including eosinophils and Th2 cells, at inflamed sites. The regulatory sequence of the CCR3 gene, contains two Runt-related transcription factor (RUNX) 1 sites and two PU.1 sites, in addition to a functional GATA site for transactivation of the CCR3 gene. In the present study, we examined the effects of the cis-acting elements of RUNX1 and PU.1 on transcription of the gene in EoL-1 eosinophilic cells and Jurkat T cells, both of which expressed functional surface CCR3 and these two transcription factors. Introduction of RUNX1 siRNA or PU.1 siRNA resulted in a modest decrease in CCR3 reporter activity in both cell types, compared with transfection of GATA-1 siRNA. Cotransfection of the two siRNAs led to inhibition in an additive manner. EMSA analysis showed that RUNX1, in particular, bound to its binding motifs. Mutagenesis analysis revealed that all point mutants lacking RUNX1- and PU.1-binding sites exhibited reduced reporter activities. These results suggest that RUNX1 and PU.1 participate in transcriptional regulation of the CCR3 gene.

Fisetin에 의한 비만세포 Th2 사이토카인 발현 하향 조절 (Down-regulation of T Helper 2-Associated Cytokine Expression by Fisetin)

  • 윤수정;표명윤
    • 약학회지
    • /
    • 제56권5호
    • /
    • pp.326-332
    • /
    • 2012
  • Mast cells play pivotal pathologic roles in allergic disease involving T helper 2 (Th2) cytokine such as interleukin (IL)-4 and IL-13. Fisetin has been known as an anti-allergic agent having inhibitory effects on the IL-4 and IL-13 gene expressions in inflammatory immune cells. However, its molecular mechanisms for suppressive effects of fisetin on IL-4 and IL-13 in activated mast cells have been incompletely elucidated. In this study we found that fisetin significantly inhibited the phorbol 12-myristate 13-acetate (PMA) and ionomycin (PI)-induced production of IL-4 and IL-13 in mast cells. The levels of mRNA were dramatically decreased by fisetin, indicating the suppression might be regulated at the transcriptional levels. Western blot analysis of the nuclear expression of various transcription factors involved in the promoter activation indicated that suppression of c-Fos was prominent together with significant down-regulation of nuclear factor of activated T-cell (NF-AT) and NF-${\kappa}B$, but not c-Jun. Furthermore, the nuclear expression of GATA binding protein 2 (GATA-2) transcription factor was significantly down-regulated by fisetin. Taken together, our study indicated fisetin has suppressive effects on IL-4 and IL-13 gene expression through the regulation of selective transcription factors.

닭 인터페론 유전자의 클로닝에 관한 연구 (MOLECULAR CLONING OF CHICKEN INTERFERON-GAMMA)

  • 송기덕;;한재용
    • 한국가금학회:학술대회논문집
    • /
    • 한국가금학회 1999년도 제16차 정기총회및학술발표회
    • /
    • pp.34-50
    • /
    • 1999
  • A cDNA encoding chicken interferon-gamma (chIFN-${\gamma}$) was amplified from P34, a CD4$^{+}$ T-cell hybridoma by reverse transcription-polymerase chain reaction (RT-PCR) and cloned into pUC18. THe sequences of cloned PCR products were determined to confirm the correct cloning. Using this cDNA as probe, chicken genomic library from White Leghorn spleen was screened. Phage clones harboring chicken interferon-gamma (chIFN-${\gamma}$) were isolated and their genomic structure elucidated. The chIFN-${\gamma}$ contains 4 exons and 3 introns spanning over 14 kb, and follows the GT/AG rule for correct splicing at the exon/intron boundaries. The four exons encode 41, 26, 57 and 40 amino acids, respectively, suggesting that the overall structure of IFN-${\gamma}$ is evolutionairly conserved in mammalian and avian species. The 5’-untranslated region and signal sequences are located in exon 1. Several AT-rich sequences located in the fourth exon may indicate a role in mRNA turnover. The 5’-flanking region contains sequences homologous to the potential binding sites for the mammalian transcription factors, activator protein-1(AP-1) activator protein-2(AP-2) cAMP-response element binding protein(CREB), activating transcription factor(ATF), GATA-binding fator(GATA), upstream stimulating factor(USF), This suggests that the mechanisms underlying transcriptional regulation of chicken and mammalian IFN-${\gamma}$ genes may be similar.r.

  • PDF