• Title/Summary/Keyword: GAS5

Search Result 10,101, Processing Time 0.038 seconds

Corrections on CH4 Fluxes Measured in a Rice Paddy by Eddy Covariance Method with an Open-path Wavelength Modulation Spectroscopy (개회로 파장 변조 분광법과 에디 공분산 방법으로 논에서 관측된 CH4 플럭스 자료의 보정)

  • Kang, Namgoo;Yun, Juyeol;Talucder, M.S.A.;Moon, Minkyu;Kang, Minseok;Shim, Kyo-Moon;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.1
    • /
    • pp.15-24
    • /
    • 2015
  • $CH_4$ is a trace gas and one of the key greenhouse gases, which requires continuous and systematic monitoring. The application of eddy covariance technique for $CH_4$ flux measurement requires a fast-response, laser-based spectroscopy. The eddy covariance measurements have been used to monitor $CO_2$ fluxes and their data processing procedures have been standardized and well documented. However, such processes for $CH_4$ fluxes are still lacking. In this note, we report the first measurement of $CH_4$ flux in a rice paddy by employing the eddy covariance technique with a recently commercialized wavelength modulation spectroscopy. $CH_4$ fluxes were measured for five consecutive days before and after the rice transplanting at the Gimje flux monitoring site in 2012. The commercially available $EddyPro^{TM}$ program was used to process these data, following the KoFlux protocol for data-processing. In this process, we quantified and documented the effects of three key corrections: (1) frequency response correction, (2) air density correction, and (3) spectroscopic correction. The effects of these corrections were different between daytime and nighttime, and their magnitudes were greater with larger $CH_4$ fluxes. Overall, the magnitude of $CH_4$ flux increased on average by 20-25% after the corrections. The National Center for AgroMeteorology (www.ncam.kr) will soon release an updated KoFlux program to public users, which includes the spectroscopic correction and the gap-filling of $CH_4$ flux.

The Flow-rate Measurements in a Multi-phase Flow Pipeline by Using a Clamp-on Sealed Radioisotope Cross Correlation Flowmeter (투과 감마선 계측신호의 Cross correlation 기법 적용에 의한 다중상 유체의 유량측정)

  • Kim, Jin-Seop;Kim, Jong-Bum;Kim, Jae-Ho;Lee, Na-Young;Jung, Sung-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • The flow rate measurements in a multi-phase flow pipeline were evaluated quantitatively by means of a clamp-on sealed radioisotope based on a cross correlation signal processing technique. The flow rates were calculated by a determination of the transit time between two sealed gamma sources by using a cross correlation function following FFT filtering, then corrected with vapor fraction in the pipeline which was measured by the ${\gamma}$-ray attenuation method. The pipeline model was manufactured by acrylic resin(ID. 8 cm, L=3.5 m, t=10 mm), and the multi-phase flow patterns were realized by an injection of compressed $N_2$ gas. Two sealed gamma sources of $^{137}Cs$ (E=0.662 MeV, ${\Gamma}$ $factor=0.326\;R{\cdot}h^{-1}{\cdot}m^2{\cdot}Ci^{-1}$) of 20 mCi and 17 mCi, and radiation detectors of $2"{\times}2"$ NaI(Tl) scintillation counter (Eberline, SP-3) were used for this study. Under the given conditions(the distance between two sources: 4D(D; inner diameter), N/S ratio: $0.12{\sim}0.15$, sampling time ${\Delta}t$: 4msec), the measured flow rates showed the maximum. relative error of 1.7 % when compared to the real ones through the vapor content corrections($6.1\;%{\sim}9.2\;%$). From a subsequent experiment, it was proven that the closer the distance between the two sealed sources is, the more precise the measured flow rates are. Provided additional studies related to the selection of radioisotopes their activity, and an optimization of the experimental geometry are carried out, it is anticipated that a radioisotope application for flow rate measurements can be used as an important tool for monitoring multi-phase facilities belonging to petrochemical and refinery industries and contributes economically in the light of maintenance and control of them.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2009 (설비공학 분야의 최근 연구 동향 : 2009년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo Young;Choi, Jong-Min;Baik, Yong-Kyu;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.492-507
    • /
    • 2010
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2009. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery and piping, and new and renewable energy. Various topics were covered in the field of general thermal and fluid flow such as an expander, a capillary tube, the flow of micro-channel water blocks, the friction and anti-wear characteristics of nano oils with mixtures of refrigerant oils, etc. Research issues mainly focused on the design of micro-pumps and fans, the heat resistance reliability of axial smoke exhaust fans, and hood systems in the field of fluid machinery and piping. Studies on ground water sources were executed concerning two well type geothermal heat pumps and multi-heat pumps in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included the heat transfer in thermoelectric cooling systems, refrigerants, evaporators, dryers, desiccant rotors. In the area of industrial heat exchangers, researches on high temperature ceramic heat exchangers, plate heat exchangers, frosting on fins of heat exchangers were performed. (3) In the field of refrigeration, papers were presented on alternative refrigerants, system improvements, and the utilization of various energy sources. Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and $CO_2$ were studied. Efforts to improve the performance of refrigeration systems were made applying various ideas of suction line heat exchangers, subcooling bypass lines and gas injection systems. Studies on heat pump systems using unutilized energy sources such as river water, underground water, and waste heat were also reported. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. In the area of cogeneration systems, papers on energy and economic analysis, LCC analysis and cost estimating were reported. Studies on ventilation and heat recovery systems introduced the effect on fire and smoke control, and energy reduction. Papers on district cooling and heating systems dealt with design capacity evaluation, application plan and field application. Also, the maintenance and management of building service equipments were presented for HVAC systems. (5) In the field of architectural environment, various studies were carried to improve indoor air quality and to analyze the heat load characteristics of buildings by energy simulation. These studies helped to understand the physics related to building load characteristics and to improve the quality of architectural environment where human beings reside in.

Analysis of 236 Pesticides in Apple for Validation of Multiresidue Method using QuEChERS Sample Preparation and PTV-GC/TOFMS Analysis (QuEChERS법과 PTV-GC/TOFMS 이용 잔류농약 분석법 개발을 위한 사과시료 중 236종 농약의 동시분석)

  • Ju, Ok-Jung;Kwon, Hye-Young;Park, Byeong-Jun;Kim, Chan-Seob;Jin, Yong-Duk;Lee, Je-Bong;Yun, Seo-Hee;Son, Kyung-Ae;Hong, Su-Myeong;Im, Geon-Jae
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.4
    • /
    • pp.401-416
    • /
    • 2011
  • The recent trend for pesticide residue analysis in food involves fast cleanup and use of mass spectrometry to achieve quantitative and qualitative analysis at the same time. Recently, the QuEChERS (quick, easy, cheap, effective, rugged and safe) multi-reside method has received much attention as a fast extraction and cleanup method of pesticide residue analysis. Therefore, multi-residue analysis of 236 pesticides was tested with the QuEChERS method by concurrent use of PTV-GC/TOFMS (gas chromatography/ time-of-flight mass spectrometry with programmable temperature vaporizer). PTV condition was optimized and when the method was applied to apples, pesticide recovery rates (spiked at 400 ng/g) ranged from 80% to 120%, and RSD values were under 10% for most compounds. The results showed that the QuEChERS sample preparation and PTV-GC/TOFMS analysis can be applied to multi-residue analysis of pesticides in fruits and vegetables.

Optimal Selection of Classifier Ensemble Using Genetic Algorithms (유전자 알고리즘을 이용한 분류자 앙상블의 최적 선택)

  • Kim, Myung-Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.99-112
    • /
    • 2010
  • Ensemble learning is a method for improving the performance of classification and prediction algorithms. It is a method for finding a highly accurateclassifier on the training set by constructing and combining an ensemble of weak classifiers, each of which needs only to be moderately accurate on the training set. Ensemble learning has received considerable attention from machine learning and artificial intelligence fields because of its remarkable performance improvement and flexible integration with the traditional learning algorithms such as decision tree (DT), neural networks (NN), and SVM, etc. In those researches, all of DT ensemble studies have demonstrated impressive improvements in the generalization behavior of DT, while NN and SVM ensemble studies have not shown remarkable performance as shown in DT ensembles. Recently, several works have reported that the performance of ensemble can be degraded where multiple classifiers of an ensemble are highly correlated with, and thereby result in multicollinearity problem, which leads to performance degradation of the ensemble. They have also proposed the differentiated learning strategies to cope with performance degradation problem. Hansen and Salamon (1990) insisted that it is necessary and sufficient for the performance enhancement of an ensemble that the ensemble should contain diverse classifiers. Breiman (1996) explored that ensemble learning can increase the performance of unstable learning algorithms, but does not show remarkable performance improvement on stable learning algorithms. Unstable learning algorithms such as decision tree learners are sensitive to the change of the training data, and thus small changes in the training data can yield large changes in the generated classifiers. Therefore, ensemble with unstable learning algorithms can guarantee some diversity among the classifiers. To the contrary, stable learning algorithms such as NN and SVM generate similar classifiers in spite of small changes of the training data, and thus the correlation among the resulting classifiers is very high. This high correlation results in multicollinearity problem, which leads to performance degradation of the ensemble. Kim,s work (2009) showedthe performance comparison in bankruptcy prediction on Korea firms using tradition prediction algorithms such as NN, DT, and SVM. It reports that stable learning algorithms such as NN and SVM have higher predictability than the unstable DT. Meanwhile, with respect to their ensemble learning, DT ensemble shows the more improved performance than NN and SVM ensemble. Further analysis with variance inflation factor (VIF) analysis empirically proves that performance degradation of ensemble is due to multicollinearity problem. It also proposes that optimization of ensemble is needed to cope with such a problem. This paper proposes a hybrid system for coverage optimization of NN ensemble (CO-NN) in order to improve the performance of NN ensemble. Coverage optimization is a technique of choosing a sub-ensemble from an original ensemble to guarantee the diversity of classifiers in coverage optimization process. CO-NN uses GA which has been widely used for various optimization problems to deal with the coverage optimization problem. The GA chromosomes for the coverage optimization are encoded into binary strings, each bit of which indicates individual classifier. The fitness function is defined as maximization of error reduction and a constraint of variance inflation factor (VIF), which is one of the generally used methods to measure multicollinearity, is added to insure the diversity of classifiers by removing high correlation among the classifiers. We use Microsoft Excel and the GAs software package called Evolver. Experiments on company failure prediction have shown that CO-NN is effectively applied in the stable performance enhancement of NNensembles through the choice of classifiers by considering the correlations of the ensemble. The classifiers which have the potential multicollinearity problem are removed by the coverage optimization process of CO-NN and thereby CO-NN has shown higher performance than a single NN classifier and NN ensemble at 1% significance level, and DT ensemble at 5% significance level. However, there remain further research issues. First, decision optimization process to find optimal combination function should be considered in further research. Secondly, various learning strategies to deal with data noise should be introduced in more advanced further researches in the future.

Recent Progress in Air Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2007 (설비공학 분야의 최근 연구 동향 : 2007년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Shin, Dong-Sin;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.844-861
    • /
    • 2008
  • The papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during the year of 2007 have been reviewed. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro nano fluid, micropump and fuel cell. Traditional CFD was still popular and widely used in research and development. Studies about fans and pumps were performed in the field of fluid machinery. Characteristics of flow and fin shape optimization are studied in the field of piping system. (2) The research works on heat transfer have been reviewed in the field of heat transfer characteristics, heat exchangers, and desiccant cooling systems. The research on heat transfer characteristics includes thermal transport in pulse tubes, high temperature superconductors, ground heat exchangers, fuel cell stacks and ice slurry systems. For the heat 'exchangers, the research on pin-tube heat exchanger, plate heat exchanger, condensers and gas coolers has been cordially implemented. The research works on heat transfer augmenting tubes have been also reported. For the desiccant cooling systems, the studies on the design and operating conditions for desiccant rotors as well as performance index are noticeable. (3) In the field of refrigeration, many papers were presented on the air conditioning system using CO2 as a refrigerant. The issues on the two-stage compression, the oil selection, and the appropriate oil charge were treated. The subjects of alternative refrigerants were also studied steadily. Hydrocarbons, DME and their mixtures were considered and various heat transfer correlations were proposed. (4) Research papers have been reviewed in the field of building facilities by grouping into the researches on heat and cold sources, air conditioning and air cleaning, ventilation and fire research including tunnel ventilation, flow control of piping system, and sound research with drain system. Main focuses have been addressed to the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies were mostly focused on analyzing the indoor environment in various spaces like cars, old tombs, machine rooms, and etc. in an architectural environmental field. Moreover, subjects of various fields such as the evaluation of noise, thermal environment, indoor air quality and development of energy analysis program were researched by various methods of survey, simulation, and field experiment.

The effect of Postural Changes on Pleural Fluid Constituents (흉수 구성 성분의 체위에 따른 차이)

  • Park, Byung-Kyu;Lee, Hyo-Jin;Kim, Yun-Seong;Heo, Jeong;Yang, Yong-Seok;Seoung, Nak-Heon;Lee, Min-Ki;Park, Soon-Kew;Shin, Young-Kee;Han, Kyeong-Moon;Choi, Pil-Sun;Soon, Choon-Hee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.2
    • /
    • pp.221-227
    • /
    • 1996
  • Background : Measurement of pleural fluid constituents are of value in the diagnosis of pleural effusions and in the seperation of exudates from transudates. The position of the patient(sitting or lying) prior to thoracentesis may result in difference in the measurement of these constituents. The purpose of this study is to determine whether postural differences in pleural fluid constituents exist, and if so, whether they are of any clinical significance. Method : 41 patients with pleural effusions on chest roentgenography were prospectively studied. The fluid cell counts, partial gas tension, and concentrations of chemical constituents were compared in the supine and upright positions. Results : 1) A total of 10 patients were found to have an transudative effusion. In the transudates there was no significant difference in pleural fluid constituents according to posture change. 2) A total of 31 patients were found to have an exudative effusion. Statistically significant postural changes were noted in pH, WBC counts, protein, and LDH concentrations in the exudates. It may be due to postural sedimentary effect in the pleural space. 3) The PCO2 measurements and glucose concentration were not affected by changes in position in exudates or transudates. Conclusion : Postural sedimentary effect occurs in the pleural space with reference to the measurement of certain pleural fluid constituents when an inflammatory process is present. Therefore it is recommended that thoracentesis after 30 minutes in the sitting position should be performed.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2011 (설비공학 분야의 최근 연구 동향: 2011년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo-Young;Choi, Jong-Min;Paik, Yong-Kyoo;Kim, Su-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.6
    • /
    • pp.521-537
    • /
    • 2012
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2011. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of fluid machinery and fluid flow, thermodynamic cycle, and new and renewable energy. Various topics were presented in the field of fluid machinery and fluid flow. Research issues mainly focused on the rankine cycle in the field of thermodynamic cycle. In the new and renewable energy area, researches were presented on geothermal energy, fuel cell, biogas, reformer, solar water heating system, and metane hydration. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, nanofluids and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer above liquid helium surface in a cryostat, methane hydrate formation, heat and mass transfer in a liquid desiccant dehumidifier, thermoelectric air-cooling system, heat transfer in multiple slot impinging jet, and heat transfer enhancement by protrusion-in-dimples. In the area of pool boiling and condensing heat transfer, researches on pool boiling of water in low-fin and turbo-B surfaces, pool boiling of R245a, convective boiling two-phase flow in trapezoidal microchannels, condensing of FC-72 on pin-finned surfaces, and natural circulation vertical evaporator were actively performed. In the area of nanofluids, thermal characteristics of heat pipes using water-based MWCNT nanofluids and the thermal conductivity and viscosity were measured. In the area of industrial heat exchangers, researches on fin-tube heat exchangers for waste gas heat recovery and Chevron type plate heat exchanger were implemented. (3) Refrigeration systems with alternative refrigerants such as $CO_2$, hydrocarbons, and mixed refrigerants were studied. Heating performance improvement of heat pump systems were tried applying supplementary components such as a refrigerant heater or a solar collector. The effects of frost growth were studied on the operation characteristic of refrigeration systems and the energy performance of various defrost methods were evaluated. The current situation of the domestic cold storage facilities was analyzed and the future demand was predicted. (4) In building mechanical system fields, a variety of studies were conducted to achieve effective consumption of heat and maximize efficiency of heat in buildings. Various researches were performed to maximize performance of mechanical devices and optimize the operation of HVAC systems. (5) In the fields of architectural environment and energy, diverse purposes of studies were conducted such as indoor environment, building energy, and renewable energy. In particular, renewable energy and building energy-related researches have mainly been studied as reflecting the global interests. In addition, various researches have been performed for reducing cooling load in a building using spot exhaust air, natural ventilation and energy efficiency systems.

Comparison of Water Potential Parameters in Aster scaber and Synurus deltoides Leaves Obtained from P-V Curves (P-V 곡선법에 의한 참취와 수리취의 수분포텐셜 비교)

  • Lee, Kyeong-Cheol;Jeon, Seong-Ryeol;Han, Sang-Sup
    • Korean Journal of Plant Resources
    • /
    • v.24 no.4
    • /
    • pp.413-418
    • /
    • 2011
  • This study was carried out to establish a proper cultivation site and diagnose the drought-tolerance of Aster scaber and Synurus deltoides leaves by using Pressure-volume curves. In order to measure pressure-volume (P-V) curves, Aster scaber and Synurus deltoides were cut off above ground part and the tip of the cutting were placed in water, which was covered with a plastic bag. Samples were kept overnight (about 12 hours) in darkness at room temperature (20~25$^{\circ}C$) to achieve maximal turgor (full saturation). The pressure in the chamber was gradually increased from 0.3MPa to 1.8MPa by nitrogen gas. After measured, leaf samples were dried at 80$^{\circ}C$ for 48 hours and dry weight of each samples were determined. The result of the original bulk osmotic potential at maximum turgor ${\Psi}^{sat}_o$ sat was lower -0.8 MPa in Aster scaber leaves than -0.7 MPa Synurus deltoides leaves. Also the osmotic potential at incipient plasmolysis ${\Psi}^{tlp}_o$ in Aster scaber leave was -0.9 MPa. In contrast, the value of maximum bulk modulus of elasticity $E_{max}$ of Aster scaber leaves were approximately two folds higher than that of Synurus deltoides leaves. The values of the relative water content at incipient plasmolysis $RWC^{tlp}$ are all above 90% showing that the function of osmoregulation is somewhat better, and Vo/DW, Vt/DW, Ns/DW of Synurus deltoides leaves were approximately 1~2 times higher than that of Aster scaber leaves. Thus, responses to water relations of Aster scaber and Synurus deltoides such as ${\Psi}^{sat}_o$, ${\Psi}^{tlp}_o$, $E_{max}$, ${\Psi}_{P,max}$, $RWC^{tl}$ were shown that the Aster scaber leaves was slightly higher drought-tolerance than Synurus deltoides leaves. However, in both of Aster scaber and Synurus deltoides, occurring incipient plasmolysis at the high water content, have a relatively lower drought-tolerance property indicating that growth of these plants are cultivated appropriate in high moisture soil sites.

Photocatalytic Oxidation of Arsenite Using Goethite and UVC-Lamp (침철석과 UVC-Lamp를 이용한 아비산염의 광촉매 산화)

  • Jeon, Ji-Hun;Kim, Seong-Hee;Cho, Hyen-Goo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.50 no.3
    • /
    • pp.215-224
    • /
    • 2017
  • Arsenic (As) is known to be the most toxic element and frequently detected in groundwater environment. Inorganic As exists as arsenite [As(III)] and arsenate [As(V)] in reduced and oxidized environments, respectively. It has been reported that the toxicity of arsenite is much higher than that of arsenate and furthermore arsenite shows relatively higher mobility in aqueous environments. For this reason, there have been numerous researches on the process for oxidation of arsenite to arsenate to reduce the toxicity of arsenic. In particular, photooxidation has been considered to be simple, economical, and efficient to attain such goal. This study was conducted to evaluate the applicability of naturally-occurring goethite as a photocatalyst to substitute for $TiO_2$ which has been mostly used in the photooxidation processes so far. In addition, the effects of several factors on the overall performance of arsenite photocatalytic oxidation process were evaluated. The results show that the efficiency of the process was affected by total concentration of dissolved cations rather than by the kind of those cations and also the relatively higher pH conditions seemed to be more favorable to the process. In the case of coexistence of arsenite and arsenate, the removal tendency by adsorption onto goethite appeared to be different between arsenite and arsenate due to their different affinities with goethite, but any effect on the photocatalytic oxidation of arsenite was not observed. In terms of effect of humic acid on the process, it is likely that the higher concentration of humic acid reduced the overall performance of the arsenite photocatalytic oxidation as a result of competing interaction of activated oxygen species, such as hydroxyl and superoxide radicals, with arsenite and humic acid. In addition, it is revealed that the injection of oxygen gas improved the process because oxygen contributes to arsenite oxidation as an electron acceptor. Based on the results of the study, consequently, the photocatalytic oxidation of aqueous arsenite using goethite seems to be greatly feasible with the optimization of process.