• Title/Summary/Keyword: GAS5

Search Result 10,101, Processing Time 0.045 seconds

Trends and Interpretation of Life Cycle Assessment (LCA) for Carbon Footprinting of Fruit Products: Focused on Kiwifruits in Gyeongnam Region (과수의 탄소발자국 표지를 위한 LCA 동향 및 해석: 경남지역 참다래를 중심으로)

  • Deurer, Markus;Clothier, Brent;Huh, Keun-Young;Jun, Gee-Ill;Kim, In-Hea;Kim, Dae-Il
    • Horticultural Science & Technology
    • /
    • v.29 no.5
    • /
    • pp.389-406
    • /
    • 2011
  • As part of a feasibility study for introducing carbon labeling of fruit products in Korea, we explore the use of carbon footprints for Korean kiwifruit from Gyeongnam region as a case study. In Korea, the Korean Environmental Industry and Technology Institute (KEITI) is responsible for the carbon footprint labeling certification, and has two types of certification programs: one program focuses on climate change response (carbon footprint labeling analysis) and the other on low-carbon products (reduction of carbon footprints analysis). Currently agricultural products have not yet been included in the program. Carbon labeling could soon be a prerequisite for the international trading of agricultural products. In general the carbon footprints of various agricultural products from New Zealand followed the methodology described in the ISO standards and conformed to the PAS 2050. The carbon footprint assessment focuses on a supply chain, and considers the foreground and the background systems. The basic scheme consists of four phases, which are the 'goal', 'scope', 'inventory analysis', and 'interpretation' phases. In the case of the carbon footprint of New Zealand kiwifruit the study tried to understand each phase's contribution to total GHG emissions. According to the results, shipping, orchard, and coolstore operation are the main life cycle stages that contribute to the carbon footprint of the kiwifruit supply chain stretching from the orchard in New Zealand to the consumer in the UK. The carbon emission of long-distance transportation such as shipping can be a hot-spot of GHG emissions, but can be balanced out by minimizing the carbon footprint of other life cycle phases. For this reason it is important that orchard and coolstore operations reduce the GHG-intensive inputs such as fuel or electricity to minimize GHG emissions and consequently facilitate the industry to compete in international markets. The carbon footprint labeling guided by international standards should be introduced for fruit products in Korea as soon as possible. The already established LCA methodology of NZ kiwifruit can be applied for fruit products as a case study.

A Study of Current Status on Pesticide Residues in Commercial Dried Agricultural Products (서울시 유통 건조농산물 중의 농약잔류 실태 연구)

  • Kim, Bog-Soon;Park, Seoung-Gyu;Kim, Mi-Sun;Cho, Tae-Hee;Han, Chang-Ho;Jo, Han-Bin;Choi, Byung-Hyun;Kim, Sung-Dan
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.114-121
    • /
    • 2007
  • The purpose of this study was to investigate 253 kinds of pesticide residues in 58 commercial dried agricultural products in Seoul. The determinations of the pesticide residues were performed using multiresidue methods and were carried out by a gas chromatography-nitrogen phosphorus detector (GC-NPD), an electron capture detector ($GC-{\mu}ECD$), a mass spectrometry detector (GC-MSD) and high performance liquid chromatography-ultraviolet detector (HPLC-UV), and a fluorescence detector (HPLC-FLD). The pesticide residue detection rate in the commercial dried agricultural products was 24.1% (14 of 58 samples). Twelve pesticide residues without maximum residue limits (MRLs) were detected. In the vegetable groups, the frequency of pesticide residues was found to be in the increasing order of dried fruiting vegetables > dried leafy vegetables > dried stalk and stem vegetables. The pesticides used on dried red pepper in the dried fruiting vegetables were varied (7 kinds) and numerous (4 of 8 samples). The pesticide types detected in the commercial dried agricultural products were in the order of pyrethroid > organochloride > organophosphorus and insecticide > fungicide > herbicide ${\cdot}$ nematicide. The primary pyrethroid pesticide detected was cypermethrin. According to the producing areas of products, large numbers of pesticide residues were found in the order of Korea, China, North Korea, USA, and Vietnam.

가금에서 분리된 유산균의 생리적 특성 및 급여효과

  • 김상호
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2002.11a
    • /
    • pp.64-84
    • /
    • 2002
  • These studies were conducted to evaluate the Properties of lactic acid Producing bacteria(LAB), isolated from broiler and laying hens cecum and select the optimum strains to improve the performance, environment of poultry house, immunity, and intestinal microflora of broiler and laying hens. In experiment I , 23 LAB strains were isolated from broiler and laying hens cecum as a colony form. Six strains were selected by acid tolerance, bile salt tolerance, viability, enzyme release, antagonism, and antibiotics susceptibility. In Experiment II, selected LABs from Ex. 1 were conducted to investigate the effects of feeding various Lactobacillus on performance, nutrients digestibility, intestinal microflora, villi development and observation of epithelium surface, blood chemicals and fecal noxious gas of broiler chicks. One thousand eighty one day old broiler chicks were fed into Lactobacillus crispatus avibrol(LCB), Lactobacillus reuteri avibro2(LRB), Lactobacillus crispatus avihen1(LCH), and Lactobacillus vaginalis avihen2(LVH) at the level of 10$^4$ and 10$\^$7/cfu/g diet. Weight gam of chicks fed Lactobacillus tended to increase from the first week and was higher from 50 to 100g in Lactobacillus treatments than control. Feed intake and feed conversion were not statistically different of all treatments. Dry Matter digestibility of Lactobacillus treatments was prone to improve compared to that of control, but was not significantly different. Protein and Ca digestibility were also tended to improve in Lactobacillus treatments relative that of control. Lactobacillus treatments showed improved tendency in crude ash and fat compared to those of control, whereas phosphorus digestibility was not consistency. Nutrients digestibilities of bird fed LCH were superior to those of other treatments, It showed significantly higher in Ca and P digestibility than control(P〈0.05). Total Lactobacillus spp. of birds fed various Lactobacillus was significantly higher in illeum for five weeks(P〈0.05), but was not different at cecum. Yeast was thought to be not completely attached to intestinal lumen for one week. However, total number of yeast was significantly increased in cecum and illeum of three weeks old chicks (P〈0.05). The number of anaerobes exhibited to tendency the increase in Lactobacillus treatments from one week old of age at both ileum and cecum.

  • PDF

Estimation of Carbon Emission and Application of LCA (Life Cycle Assessment) from Barely (Hordeum vulgare L.) Production System (보리의 생산과정에서 발생하는 탄소배출량 산정 및 전과정평가 적용)

  • So, Kyu-Ho;Park, Jung-Ah;Lee, Gil-Zae;Ryu, Jong-Hee;Shim, Kyo-Moon;Roh, Kee-An
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.722-727
    • /
    • 2010
  • This study was conducted to estimate the carbon footprint and to establish the database of the LCI (Life Cycle Inventory) for barely cultivation system. Barley production system was separated into the naked barley, the hulled barley and the two-rowed barley according to type of barley species. Based on collecting the data for operating LCI, it was shown that input of fertilizer was the highest value of 9.52E-01 kg $kg^{-1}$ for two-rowed braley. For LCI analysis focussed on the greenhouse gas (GHG), it was observed that carbon footprint were 1.25E+00 kg $CO_2$-eq. $kg^{-1}$ naked braley, 1.09E+00 kg $CO_2$-eq. $kg^{-1}$ hulled braley and 1.71E+00 $CO_2$-eq. $kg^{-1}$ two-rowed barley; especially two-rowed barley cultivation system had highest emission value as 1.09E+00 kg $CO_2$ $kg^{-1}$ barley. It might be due to emit from mainly fertilizer production for barley cultivation. Also $N_2O$ was emitted at 7.55E-04 kg $N_2O\;kg^{-1}$ barley as highest value from hulled barley cultivation system because of high N fertilizer input. The result of life cycle impcat assessment (LCIA), it was observed that most of carbon emission from barely cultivation system was mainly attributed to fertilizer production and cropping unit. Characterization value of GWP was 1.25E+00 (naked barley), 1.09E+00 (hulled barley) and 1.71E+00 (two-rowed barely) kg $CO_2$-eq. $kg^{-1}$, respectively.

Estimation of Carbon Emission and Application of LCA (Life Cycle Assessment) from Potato (Solanum tuberosum L.) Production System (감자의 생산과정에서 발생하는 탄소배출량 산정과 전과정평가의 적용)

  • So, Kyu-Ho;Ryu, Jong-Hee;Shim, Kyo-Moon;Lee, Gil-Zae;Roh, Kee-An;Lee, Deog-Bae;Park, Jung-Ah
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.728-733
    • /
    • 2010
  • This study was carried out to estimate carbon emission using LCA and to establish LCI database of potato production system. Potato production system was categorized into the fall season potato and the spring season potato according to potato cropping type. The results of collecting data for establishing LCI D/B showed that input of fertilizer for fall season potato production was more than that for spring season potato production. Input of pesticide for spring season potato production was much more than that for fall season potato production. The value of field direct emission ($CO_2$, $CH_4$, $N_2O$) were 2.17E-02 kg $kg^{-1}$ for spring season potato and 2.47E-02 kg $kg^{-1}$ for fall season potato, respectively. The result of LCI analysis focussed on the greenhouse gas (GHG), it was observed that carbon footprint values were 8.38E-01 kg $CO_2$-eq. $kg^{-1}$ for spring season potato and 8.10E-01 kg $CO_2$-eq. $kg^{-1}$ for fall season potato; especially for 90% and 6% of $CO_2$ emission from fertilizer and potato production, respectively. $N_2O$ was emitted from the process of N fertilizer production (76%) and potato production (23%). It was observed that characterization of values of GWP were 8.38E-01 kg $CO_2$-eq. $kg^{-1}$ for spring season potato and 8.10E-01 kg $CO_2$-eq. $kg^{-1}$ for fall season potato.

Study of Oil Palm Biomass Resources (Part 5) - Torrefaction of Pellets Made from Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 V - 오일팜 바이오매스 펠릿의 반탄화 연구 -)

  • Lee, Ji-Young;Kim, Chul-Hwan;Sung, Yong Joo;Nam, Hye-Gyeong;Park, Hyeong-Hun;Kwon, Sol;Park, Dong-Hun;Joo, Su-Yeon;Yim, Hyun-Tek;Lee, Min-Seok;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.34-45
    • /
    • 2016
  • Global warming and climate change have been caused by combustion of fossil fuels. The greenhouse gases contributed to the rise of temperature between $0.6^{\circ}C$ and $0.9^{\circ}C$ over the past century. Presently, fossil fuels account for about 88% of the commercial energy sources used. In developing countries, fossil fuels are a very attractive energy source because they are available and relatively inexpensive. The environmental problems with fossil fuels have been aggravating stress from already existing factors including acid deposition, urban air pollution, and climate change. In order to control greenhouse gas emissions, particularly CO2, fossil fuels must be replaced by eco-friendly fuels such as biomass. The use of renewable energy sources is becoming increasingly necessary. The biomass resources are the most common form of renewable energy. The conversion of biomass into energy can be achieved in a number of ways. The most common form of converted biomass is pellet fuels as biofuels made from compressed organic matter or biomass. Pellets from lignocellulosic biomass has compared to conventional fuels with a relatively low bulk and energy density and a low degree of homogeneity. Thermal pretreatment technology like torrefaction is applied to improve fuel efficiency of lignocellulosic biomass, i.e., less moisture and oxygen in the product, preferrable grinding properties, storage properties, etc.. During torrefacton, lignocelluosic biomass such as palm kernell shell (PKS) and empty fruit bunch (EFB) was roasted under an oxygen-depleted enviroment at temperature between 200 and $300^{\circ}C$. Low degree of thermal treatment led to the removal of moisture and low molecular volatile matters with low O/C and H/C elemental ratios. The mechanical characteristics of torrefied biomass have also been altered to a brittle and partly hydrophobic materials. Unfortunately, it was much harder to form pellets from torrefied PKS and EFB due to thermal degradation of lignin as a natural binder during torrefaction compared to non-torrefied ones. For easy pelletization of biomass with torrefaction, pellets from PKS and EFB were manufactured before torrefaction, and thereafter they were torrefied at different temperature. Even after torrefaction of pellets from PKS and EFB, their appearance was well preserved with better fuel efficiency than non-torrefied ones. The physical properties of the torrefied pellets largely depended on the torrefaction condition such as reaction time and reaction temperature. Temperature over $250^{\circ}C$ during torrefaction gave a significant impact on the fuel properties of the pellets. In particular, torrefied EFB pellets displayed much faster development of the fuel properties than did torrefied PKS pellets. During torrefaction, extensive carbonization with the increase of fixed carbons, the behavior of thermal degradation of torrefied biomass became significantly different according to the increase of torrefaction temperature. In conclusion, pelletization of PKS and EFB before torrefaction made it much easier to proceed with torrefaction of pellets from PKS and EFB, leading to excellent eco-friendly fuels.

Lung Preservation Study for Above 20 Hours of LPDG Solution in Canine Lung Allotransplactation (폐이식 실험견에서 LPDG용액을 이용한 20시간 이상 폐보존효과 관찰)

  • Park, Chang-Gwon;Gwon, Geon-Yeong;Yu, Yeong-Seon
    • Journal of Chest Surgery
    • /
    • v.30 no.10
    • /
    • pp.949-960
    • /
    • 1997
  • Background. Limited ischemic tolerance of the lung has remained one of the factors that limits the expansion of pulmonary transplantation as a treatment for end-stage pulmonary disease. Numerous studies on safe long term preservation for lung transplantation has been performed for the purpose of developing ideal preservation solution with extracellular type or intracellular type solutions. In this. study, we examined the efficacy of L DG solution in lung preservation longer than 20 hours by comparison with modified Euro-Collins solution. Iwethods. Thirty-(our adult mongrel dogs were divided into two groups. Donor lungs were flushed with LPDG solution(n=9) or modified Euro-Collins(MEC) solution(n=8) and stored for 24 hours at 1$0^{\circ}C$. All donor lungs were perfused through the pulmonary arteries with solutions containing prostaglandin El and verapamil. Left canine lung allotransplantations wereperformed. Assessment(hemodynamic indices and arterial blood gas analysis) of left implanted lung was made by occluding the right pulmonary artery for ten minutes using pulmonary artery Cuff. Assessment was repeated at the interval of 30 minutes, one hour, and two hours later after reperfusion and then chest X-ray, computed tomogram and lung perfusion scan were obtained. In survival dogs follow-up studies were done with assessment with chest X-ray, computed tomogram of the chest and lung perfusion scan on 7th day postoperatively. After preservation above 20 hours, pathological examinations for ultrastructural findings on right lung were performed in each group. Results. With respect to arterial oxygen tension, LPDG group was superior to MEC but there was no statistical significance for 2 hours after reperfusion. Mean pulmonary artery pressure was less increased(p < 0.05) and cardiac output higher(p <0.05) than MEC group until 2 hours after reperfusion. After 2 hours of reperfusion, both groups showed transplanted lung function deteriorated gradually. Perfusion scan of the transplanted lung in LPDG group showed better perfusion rate in immediate post-reperfusion, 3 days and 7 days later respectively but there was no statistical significance and corelation with PaO2 and computed tomoRravhic views. In scanning electron microscopy of pulmonary artery after preservation, LPDG group relatively shows less irregular protrusion of the inner surface of endothelial cell of poulmonary artery than MEC group. Conclusions, e concluded that LPDG solution can offer safe lung preservation above 20 hours with adequate immunosuppressive therapy and prevention of the infection.

  • PDF

The Clinical Effect of Administration of Magnesium Sulfate in Cardiac Surgery (심장수술 시 황산마그네슘 투여의 임상효과)

  • Bang Jung-Heui;Moon Seong-Min;Kim Si-Ho;Cho Kwang-Jo;Choi Pil-Jo;Woo Jong-Su
    • Journal of Chest Surgery
    • /
    • v.39 no.5 s.262
    • /
    • pp.366-375
    • /
    • 2006
  • Background: Hypomagnesemia is a common complication after cardiac surgery with cardiopulmonary bypass. The purpose of this study was to assess the clinical beneficial effect of administration of magnesium sulfate in cardiac surgery. Material and Method: Thirty five patients scheduled for elective cardiac surgery were randomly assigned to magnesium group (n=20) which received magnesium sulfate in priming solution (1 g) and cardioplegic solution (1 g) or control group (n=15) which did not receive it. Arterial blood samples were drawn for measuring $Mg^{++}$ and electrolytes contents, blood gas analysis, CBC, total protein, albumin, blood urea nitrogen (BUN), creatinine, alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin, tumor necrosis factor-${\alpha}$ $(TNF-{\alpha})$, interleukin-6 (IL-6), interleukin-10 (IL-10), creatine phosphokinase (CpK), creatine kinase-MB (CK-MB), lactate dehydrogenase(LDH), troponin-1 (TNI), prothrombin time (PT) and activated pratial thromboplastin time level (aPTT). Venous blood samples were drawn before and after the operation for measuring activated clotting time level (ACT). Result: $Mg^{++}$ levels in magensium group were higher than those of control group at intraoperative and post-operative periods (p<0.05). dysrhythmias were lower in magnesium group (8 cases out of 17 patients, 46.4%) than in control group (10 cases out of 10, 100%, p=0.050). Conclusion: These results showed that administration of low dose magnesium sulfate during cardiac surgery prevented hypomagnesemia and lowered incidence of dysrhythmia.

유청단백질로 만들어진 식품포장재에 관한 연구

  • Kim, Seong-Ju
    • 한국유가공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.59-60
    • /
    • 2002
  • Edible films such as wax coatings, sugar and chocolate covers, and sausage casings, have been used in food applications for years$^{(1)}$ However, interest in edible films and biodegradable polymers has been renewed due to concerns about the environment, a need to reduce the quantity of disposable packaging, and demand by the consumer for higher quality food products. Edible films can function as secondary packaging materials to enhance food quality and reduce the amount of traditional packaging needed. For example, edible films can serve to enhance food quality by acting as moisture and gas barriers, thus, providing protection to a food product after the primary packaging is opened. Edible films are not meant to replace synthetic packaging materials; instead, they provide the potential as food packagings where traditional synthetic or biodegradable plastics cannot function. For instance, edible films can be used as convenient soluble pouches containing single-servings for products such as instant noodles and soup/seasoning combination. In the food industry, they can be used as ingredient delivery systems for delivering pre-measured ingredients during processing. Edible films also can provide the food processors with a variety of new opportunities for product development and processing. Depends on materials of edible films, they also can be sources of nutritional supplements. Especially, whey proteins have excellent amino acid balance while some edible films resources lack adequate amount of certain amino acids, for example, soy protein is low in methionine and wheat flour is low in lysine$^{(2)}$. Whey proteins have a surplus of the essential amino acid lysine, threonine, methionine and isoleucine. Thus, the idea of using whey protein-based films to individually pack cereal products, which often deficient in these amino acids, become very attractive$^{(3)}$. Whey is a by-product of cheese manufacturing and much of annual production is not utilized$^{(4)}$. Development of edible films from whey protein is one of the ways to recover whey from dairy industry waste. Whey proteins as raw materials of film production can be obtained at inexpensive cost. I hypothesize that it is possible to make whey protein-based edible films with improved moisture barrier properties without significantly altering other properties by producing whey protein/lipid emulsion films and these films will be suitable far food applications. The fellowing are the specific otjectives of this research: 1. Develop whey protein/lipid emulsion edible films and determine their microstructures, barrier (moisture and oxygen) and mechanical (tensile strength and elongation) properties. 2. Study the nature of interactions involved in the formation and stability of the films. 3. Investigate thermal properties, heat sealability, and sealing properties of the films. 4. Demonstrate suitability of their application in foods as packaging materials. Methodologies were developed to produce edible films from whey protein isolate (WPI) and concentrate (WPC), and film-forming procedure was optimized. Lipids, butter fat (BF) and candelilla wax (CW), were added into film-forming solutions to produce whey protein/lipid emulsion edible films. Significant reduction in water vapor and oxygen permeabilities of the films could be achieved upon addition of BF and CW. Mechanical properties were also influenced by the lipid type. Microstructures of the films accounted for the differences in their barrier and mechanical properties. Studies with bond-dissociating agents indicated that disulfide and hydrogen bonds, cooperatively, were the primary forces involved in the formation and stability of whey protein/lipid emulsion films. Contribution of hydrophobic interactions was secondary. Thermal properties of the films were studied using differential scanning calorimetry, and the results were used to optimize heat-sealing conditions for the films. Electron spectroscopy for chemical analysis (ESCA) was used to study the nature of the interfacial interaction of sealed films. All films were heat sealable and showed good seal strengths while the plasticizer type influenced optimum heat-sealing temperatures of the films, 130$^{\circ}$C for sorbitol-plasticized WPI films and 110$^{\circ}$C for glycerol-plasticized WPI films. ESCA spectra showed that the main interactions responsible for the heat-sealed joint of whey protein-based edible films were hydrogen bonds and covalent bonds involving C-0-H and N-C components. Finally, solubility in water, moisture contents, moisture sorption isotherms and sensory attributes (using a trained sensory panel) of the films were determined. Solubility was influenced primarily by the plasticizer in the films, and the higher the plasticizer content, the greater was the solubility of the films in water. Moisture contents of the films showed a strong relationship with moisture sorption isotherm properties of the films. Lower moisture content of the films resulted in lower equilibrium moisture contents at all aw levels. Sensory evaluation of the films revealed that no distinctive odor existed in WPI films. All films tested showed slight sweetness and adhesiveness. Films with lipids were scored as being opaque while films without lipids were scored to be clear. Whey protein/lipid emulsion edible films may be suitable for packaging of powder mix and should be suitable for packaging of non-hygroscopic foods$^{(5,6,7,8,)}$.

  • PDF

Effect on Digestion Efficiency by Adding Microbial Agent in Mesophilic Two-stage Anaerobic Digester (중온2단혐기성소화조에 미생물제재 주입시 소화효율에 미치는 영향)

  • Jung, Byung-Gil;Kim, Seok-Soon;Kang, Dong-Hyo;Sung, Nak-Chang;Choi, Seung-Ho;Lee, Hee-Pom
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.3
    • /
    • pp.75-86
    • /
    • 2003
  • In the near future, the capacity of conventional anaerobic digester is thought to be insufficient because of the increase of the total solids from expansion of intercepting sewer, sewage quantity and direct input of night soil from near apartment districts. The objectives of this study was to investigate the improvement of digestion efficiency using microbial agent(Bio-dh). The system was a pilot-scale, two-staged, anaerobic sludge digestion system. The first-stage digester was heated and mixed. The agitation velocity of the first-stage digester was 120rpm. The second-stage digester was neither heated nor mixed. The Digestion temperature was kept at $35{\pm}1^{\circ}C$ The detention time of digester was 19 days. The dosage of sewage sludge and microbial agent were $0.65m^3/day$ and $0.5{\ell}/day$, respectively. The experiments was run for 25days. Three times a week, $COD_{Mn}$ and SS of effluent, TS, VS, and biogas production rate were measured. Temperature, pH, and alkalinity were measured daily. The results were as follows ; Without microbial agent, digestion efficiencies ranged 46.0%~50.9%(mean=48.6%), with microbial agent(Bio-dh), digestion efficiencies ranged 52.8%~57.3%(mean=54.2%). Consequently, microbial agent(Bio-dh) increased the sludge digestion efficiency about 12%. Also, Without microbial agent, the mean concentration of $COD_{Mn}$ and SS of second-stage digester effluent were 1,639mg/L, 4,888mg/L respectively. With microbial agent, the mean concentration of $COD_{Mn}$ and SS of second-stage digester effluent were 859mg/L, 2,405mg/L respectively. Consequently, microbial agent(Bio-dh) increased the removal efficiency of $COD_{Mn}$ and SS about 47.6% and 50.8%, respectively.

  • PDF