• 제목/요약/키워드: GARCH 모형

검색결과 175건 처리시간 0.021초

비선형 평균 일반화 이분산 자기회귀모형의 추정 (Estimation of nonlinear GARCH-M model)

  • 심주용;이장택
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권5호
    • /
    • pp.831-839
    • /
    • 2010
  • 최소제곱 서포트벡터기계는 비선형회귀분석과 분류에 널리 쓰이는 커널기법이다. 본 논문에서는 금융시계열자료의 평균 및 변동성을 추정하기 위하여 평균의 추정 방법으로는 가중최소제곱 서포트벡터기계, 변동성의 추정 방법으로는 최소제곱 서포트벡터기계를 사용하는 비선형 평균 일반화 이분산 자기회귀모형을 제안한다. 제안된 모형은 선형 일반화 이분산 자기회귀모형 및 선형 평균 일반화 이분산 자기회귀모형보다 더 나은 추정 능력을 가진다는 것을 실제자료의 추정을 통하여 보였다.

광양항의 수출물동량과 수출액의 변동성 (Volatility of Export Volume and Export Value of Gwangyang Port)

  • 모수원;이광배
    • 한국항만경제학회지
    • /
    • 제31권1호
    • /
    • pp.1-14
    • /
    • 2015
  • 변동성이나 변이계수의 크기와 미치는 효과의 크기가 반드시 비례하는 것은 아니다. 그것은 변동성을 유발하는 요인이나 변동성의 특성에 차이가 있을 수 있기 때문이다. 그런데 광양항의 수출액과 수출량은 밀접한 선형관계를 가지나 두 변수의 변동률은 낮은 상관관계를 보인다. 이것은 두 변수의 변동성의 특성이 다르다는 것을 의미한다. 이에 물동량과 수출액의 예측하지 못한 요인의 밀도함수가 정규분포 형태를 보이지 않을 뿐만 아니라 부호편의검정, 규모편의검정, 결합검정, Ljung-Box Q 통계량 등이 GARCH와 같은 변동성 모형을 이용하여 분석을 실시하는 것이 합리적임을 보인다. 물동량 변동성에서는 대칭적 GARCH모형이 아닌 비대칭 GARCH모형이 적합한데 비해 수출액 변동성에서는 GARCH모형이 적합함을 보인다. 뉴스충격곡선을 도출하여 물동량의 경우 GJR모형이 EGARCH모형에 비해 나쁜 뉴스에 대한 분산을 과대평가하나 좋은 뉴스에 대한 분산을 과소평가하는 경향이 있음을 밝힌다.

다변량 고빈도 금융시계열의 변동성 분석 (Multivariate volatility for high-frequency financial series)

  • 이근주;황선영
    • 응용통계연구
    • /
    • 제30권1호
    • /
    • pp.169-180
    • /
    • 2017
  • 본 논문은 다변량 변동성을 다루고 있다. 최근 들어 활발하게 연구가 되고 있는 고빈도(high frequency)자료에 기초한 변동성 측정방법인 실현변동성을 계산하고 기존의 다변량 GARCH 모형과 비교분석하였다. 정준상관분석과 VaR분석을 이용하여 실현변동성과 다양한 다변량 GARCH 모형을 비교하였으며 최근 6년 동안의 삼성전자/현대차 거래 가격 고빈도 데이터를 이용하여 실증분석을 실시하였다.

GARCH 모형을 활용한 비트코인에 대한 체계적 위험분석 (Systematic Risk Analysis on Bitcoin Using GARCH Model)

  • 이중만
    • Journal of Information Technology Applications and Management
    • /
    • 제25권4호
    • /
    • pp.157-169
    • /
    • 2018
  • The purpose of this study was to examine the volatility of bitcoin, diagnose if bitcoin are a systematic risk asset, and evaluate their effectiveness by estimating market beta representing systematic risk using GARCH (Generalized Auto Regressive Conditional Heteroskedastieity) model. First, the empirical results showed that the market beta of Bitcoin using the OLS model was estimated at 0.7745. Second, using GARCH (1, 2) model, the market beta of Bitcoin was estimated to be significant, and the effects of ARCH and GARCH were found to be significant over time, resulting in conditional volatility. Third, the estimated market beta of the GARCH (1, 2), AR (1)-GARCH (1), and MA (1)-GARCH (1, 2) models were also less than 1 at 0.8819, 0.8835, and 0.8775 respectively, showing that there is no systematic risk. Finally, in terms of efficiency, GARCH model was more efficient because the standard error of a market beta was less than that of the OLS model. Among the GARCH models, the MA (1)-GARCH (1, 2) model considering non-simultaneous transactions was estimated to be the most appropriate model.

이분산성 및 두꺼운 꼬리분포를 가진 금융시계열의 위험추정 : VaR와 ES를 중심으로 (VaR and ES as Tail-Related Risk Measures for Heteroscedastic Financial Series)

  • 문성주;양성국
    • 재무관리연구
    • /
    • 제23권2호
    • /
    • pp.189-208
    • /
    • 2006
  • 대부분의 국내 선행연구들은 이분산성은 GARCH모형으로, 꼬리위험은 EVT모형으로 따로 고려하였다. 이 경우 이분산성 및 꼬리의 두꺼움을 동시에 고려하지 못한 VaR값은 실제 위험량을 적절히 반영하지 못할 가능성이 있다. 따라서 본 연구에서는 이분산성 및 꼬리의 두꺼움을 고려할 수 있는 GARCH-EVT모형이 정규분포를 가정한 VaR와 이분산성을 가정한 VaR보다 높은 성과를 나타내는지 살펴보았다. 연구결과를 요약하면 다음과 같다. 첫째, 주식수익률은 정규분포보다는 꼬리부분이 두꺼운 형태를 보이고, 이분산성을 가진다. 이 경우 정규분포하에서 산출된 VaR는 실제 손실금액을 과소평가할 위험성이 있어 이분산성과 꼬리의 두꺼움을 감안할 수 있는 모형의 도입이 필요함을 알 수 있다. 둘째, 이분산성과 꼬리의 두꺼움을 고려한 GARCH-EVT모형하에서의 VaR는 정규분포를 가정한 VaR와 이분산성을 가정한 VaR보다 높은 성과를 보였다. 셋째, 이분산성 및 꼬리의 두꺼움을 고려한 GARCH-EVT모형하에서의 ES는 정규분포를 가정한 VaR와 이분산성을 가정한 VaR보다 높은 성과를 일관되게 보여주지 않았다. 결론적으로 이분산성과 꼬리의 두꺼움을 동시에 반영한 GARCH-EVT모형하에서 VaR가 금융기관의 위험관리의 유용한 도구가 될 수 있는 가능성을 발견하였다. 비록 상대적으로 높은 성과를 보이지는 않지만 ES는 VaR함께 위험척도로 같이 사용할 때 보수적인 위험관리 차원에 부합될 것이다.

  • PDF

커널기계 기법을 이용한 일반화 이분산자기회귀모형 추정 (Estimating GARCH models using kernel machine learning)

  • 황창하;신사임
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권3호
    • /
    • pp.419-425
    • /
    • 2010
  • 커널기계 기법은 최근 대용량 또는 고차원 비선형 자료를 분석하는 방법으로 인기를 많이 얻고 있다. 본 논문에서는 주식시장 수익률의 조건부 변동성을 예측하기 위한 일반화 이분산자기회귀모형을 추정하기 위해 커널기계 기법을 사용한다. 일반화 이분산자기회귀모형은 자료가 정규분포를 따른다고 가정한 후 주로 최대우도법을 사용하여 추정된다. 본 논문에서는 꼬리가 두꺼운 분포를 갖는 금융시계열자료의 변동성을 추정할 때 커널기계 기법이 최대우도법과 서포트벡터기계 보다 더 정확한 예측능력을 가진다는 것을 보이고자 한다.

시계열 모형을 이용한 단기 풍력발전 예측 연구 (A study on short-term wind power forecasting using time series models)

  • 박수현;김삼용
    • 응용통계연구
    • /
    • 제29권7호
    • /
    • pp.1373-1383
    • /
    • 2016
  • 풍력에너지 산업이 발전하고 풍력발전에 대한 의존율이 높아짐에 따라 안정적인 공급이 중요해지고 있다. 원활한 전력수급계획을 세우기 위해서 풍력발전량을 정확히 예측하는 것이 중요하다. 본 논문에서는 강원도 평창 횡계리에 설치된 대관령 2풍력(2MW 1기)의 시간별 풍력발전 데이터와 강원도 대관령 기상대에서 관측되는 시간별 풍속과 풍향 데이터를 기상청 지상관측자료에서 수집하여 연구하였다. 풍력발전량 예측을 위하여 신경망 모형과 시계열 모형인 ARMA, ARMAX, ARMA-GARCH, Holt Winters 모형을 비교하였다. 모형 간 예측력을 비교하기 위해 mean absolute error(MAE)를 사용하였다. 모형의 예측 성능 비교 결과 1시간에서 3시간의 단기 예측에 있어서 ARMA-GARCH 모형이 우수한 예측력을 보였다. 6시간 이후 예측에서는 신경망 모형이 우수한 예측을 보였다.

일반화 자기회귀 조건부 이분산 모형을 이용한 한국프로야구 관중수의 예측 (Forecasting attendance in the Korean professional baseball league using GARCH models)

  • 이장택;방소영
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권6호
    • /
    • pp.1041-1049
    • /
    • 2010
  • 한국프로야구에서 관중수는 프로야구 발전을 위한 가장 큰 수입원이며 프로야구팀의 관심사이므로 수요예측 모형이 있다면 프로야구구단들은 관중유치 전략을 세우는데 도움이 될 것이다. 이러한 이유로 본 연구에서는 한국프로야구 관중수를 예측하는 모형을 제안하고자 하며 제한된 여건 속에서 관중수에 영향을 미치는 이용 가능한 대부분의 변수들을 고려하였다. 종속변수는 로그관중수로 두고 다양한 독립변수와 오차항의 분산을 등분산, 조건부 이분산을 가정한 여러 가지 일반화 자기회귀 모형, 오차항의 분포가 t분포를 따른다는 가정을 이용한 일반화 자기회귀 조건부 이분산 모형들을 서로 비교하였는데, 그 결과 고려된 모형 중에서는 t분포를 가정한 일반화 자기회귀 조건부 이분산 모형이 가장 예측력이 뛰어났다.

서포트벡터기계를 이용한 VaR 모형의 결합 (Combination of Value-at-Risk Models with Support Vector Machine)

  • 김용태;심주용;이장택;황창하
    • Communications for Statistical Applications and Methods
    • /
    • 제16권5호
    • /
    • pp.791-801
    • /
    • 2009
  • VaR(Value-at-Risk)는 시장위험을 측정하기 위한 중요한 도구로 사용되고 있다. 그러나 적절한 VaR 모형의 선택에는 논란의 여지가 많다. 본 논문에서는 특정 모형을 선택하여 VaR 예측값을 구하는 대신 대표적으로 많이 사용되는 두개의 VaR 모형인 역사적 모의실험과 GARCH 모형의 예측값들을 서포트벡터기계 분위수 회귀모형을 이용하여 결합하는 방법을 제안한다.

주식수익률(株式收益率) 분산(分散)의 시간(時間) 변동성(變動性)에 관한 연구(硏究)

  • 신재정;정범석
    • 재무관리연구
    • /
    • 제10권2호
    • /
    • pp.263-301
    • /
    • 1993
  • 최근의 연구결과에 의하면 분산이 시간에 따라 변화하여 이분산적(異分散的)이며, 시계열상관(時系列相關)이 존재하는 것으로 나타나고 있다. 일정(一定)한 분산을 가정하여 주식수익률(株式收益率)의 움직임을 설명하는 기존의 모형들은 주식수익률(株式收益率)을 예측하는데 편의(偏倚)(bias)를 가지게 되며, 또한 투자자(投資者)들에게 정확한 위험측정(危險測定)의 수단을 제공하지 못하고 있다. 따라서 본 연구는 우리나라 주식수익률(株式收益率)의 분산이 시간에 따라 변화하는지를 살펴보기 위해 종합주가지수(綜合株價指數) 및 규모별(規模別) 지수(指數)를 사용하여 ARCH 및 GARCH 모형을 추정하였다. 또한 기대수익률(期待收益率)과 조건부(條件附) 분산(分散)사이의 다기간(多期間)(intertemporal) 관계를 ARCH-M 및 GARCH-M 모형을 사용하여 추정하였다. 추정결과는 우리나라 주식시장에도 유의적인 ARCH 및 GARCH 효과, 즉 주식수익률이 매우 이분산적(異分散的)인 것으로 나타났다. 그리고 기대수익률(期待收益率)과 조건부(條件附) 분산(分散)사이의 관계에서 ARCH-M 모형과 GARCH-M 모형의 추정결과가 다르게 나타났으나 전체적으로 유의하지 않는 것으로 나타났다. 이러한 본 연구결과로 조건부(條件附) 분산모형(分散模型)을 통하여 기대수익률(期待收益率) 및 분산(分散)의 움직임을 더욱 잘 파악할 수 있을 것으로 생각되며, 따라서 주식수익률(株式收益率) 및 분산(分散)의 예측에 더 좋은 도구로 활용될 수 있을 것으로 생각된다.

  • PDF