• Title/Summary/Keyword: GAPDH (glyceraldehyde-3-phosphate dehydrogenase)

Search Result 57, Processing Time 0.019 seconds

Subcutaneous Streptococcus dysgalactiae GAPDH vaccine in mice induces a proficient innate immune response

  • Ran An;Yongli Guo;Mingchun Gao;Junwei Wang
    • Journal of Veterinary Science
    • /
    • v.24 no.5
    • /
    • pp.72.1-72.16
    • /
    • 2023
  • Background: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) on the surface of Streptococcus dysgalactiae, coded with gapC, is a glycolytic enzyme that was reported to be a moonlighting protein and virulence factor. Objective: This study assessed GAPDH as a potential immunization candidate protein to prevent streptococcus infections. Methods: Mice were vaccinated subcutaneously with recombinant GAPDH and challenged with S. dysgalactiae in vivo. They were then evaluated using histological methods. rGAPDH of mouse bone marrow-derived dendritic cells (BMDCs) was evaluated using immunoblotting, reverse transcription quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay methods. Results: Vaccination with rGAPDH improved the survival rates and decreased the bacterial burdens in the mammary glands compared to the control group. The mechanism by which rGAPDH vaccination protects against S. dysgalactiae was investigated. In vitro experiments showed that rGAPDH boosted the generation of interleukin-10 and tumor necrosis factor-α. Treatment of BMDCs with TAK-242, a toll-like receptor 4 inhibitor, or C29, a toll-like receptor 2 inhibitor, reduced cytokines substantially, suggesting that rGAPDH may be a potential ligand for both TLR2 and TLR4. Subsequent investigations showed that rGAPDH may activate the phosphorylation of MAPKs and nuclear factor-κB. Conclusions: GAPDH is a promising immunization candidate protein for targeting virulence and enhancing immune-mediated protection. Further investigations are warranted to understand the mechanisms underlying the activation of BMDCs by rGAPDH in a TLR2- and TLR4-dependent manner and the regulation of inflammatory cytokines contributing to mastitis pathogenesis.

Evaluation of Candidate Housekeeping Genes for the Normalization of RT-qPCR Analysis using Developing Embryos and Prolarvae in Russian Sturgeon Acipenser gueldenstaedtii (러시아 철갑상어(Acipenser gueldenstaedtii) 발생 시료의 RT-qPCR 분석을 위한 내재 대조군 유전자의 선정)

  • Nam, Yoon Kwon;Lee, Sang Yoon;Kim, Eun Jeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.1
    • /
    • pp.95-106
    • /
    • 2018
  • To evaluate appropriate reference genes for the normalization of quantitative reverse transcription PCR (RT-qPCR) data with embryonic and larval samples from Russian sturgeon Acipenser gueldenstaedtii, the expression stability of eight candidate housekeeping genes, including beta-actin (ACTB), elongation factor-1A (EF1A), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), histone 2A (H2A), ribosomal protein L5 (RPL5), ribosomal protein L7 (RPL7), succinate dehydrogenase (SDHA), and ubiquitin-conjugating enzyme E2 (UBE2A), were tested using embryonic samples from 12 developmental stages and larval samples from 11 ontogenic stages. Based on the stability rankings from three statistic software packages, geNorm, NormFinder, and BestKeeper, the expression stability of the embryonic subset was ranked as UBE2A>H2A>SDHA>GAPDH>RPL5>EF1A>ACTB>RPL7. On the other hand, the ranking in the larval subset was determined as UBE2A>GAPDH>SDHA>RPL5>RPL7>H2A>EF1A>AC TB. When the two subsets were combined, the overall ranking was UBE2A>SDHA>H2A>RPL5>GAPDH>EF1A>ACTB>RPL7. Taken together, our data suggest that UBE2A and SDHA are recommended as suitable references for developmental and ontogenic samples of this sturgeon species, whereas traditional housekeepers such as ACTB and GAPDH may not be suitable candidates.

Genomic Organization, Tissue Distribution and Developmental Expression of Glyceraldehyde 3-Phosphate Dehydrogenase Isoforms in Mud Loach Misgurnus mizolepis

  • Lee, Sang Yoon;Kim, Dong Soo;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.4
    • /
    • pp.291-301
    • /
    • 2013
  • The genomic organization, tissue distribution, and developmental expression of two paralogous GAPDH isoforms were characterized in the mud loach Misgurnus mizolepis (Cypriniformes). The mud loach gapdh isoform genes (mlgapdh-1 and mlgapdh-2) had different exon-intron organizations: 12 exons in mlgapdh-1 (spanning to 4.88 kb) and 11 in mlgapdh-2 (11.78 kb), including a non-translated exon 1 in each isoform. Southern blot hybridization suggested that the mud loach might possess the two copies of mlgapdh-1 and a single copy of mlgapdh-2. The mlgapdh-1 transcript levels are high in tissues requiring high energy flow, such as skeletal muscle and heart, whereas mlgapdh-2 is expressed abundantly in the brain. Both isoforms are differentially regulated during embryonic and larval development, during which their expression is upregulated with the progress of development. Lipopolysaccharide challenge preferentially induced mlgapdh-2 transcripts in the liver. Therefore, the two isoforms have diversified functionally; mlgapdh-1 is associated more closely with energy metabolism, while mlgapdh-2 is related more to stress/immune responses, in the mud loach.

Lysophosphatidic Acid-Induced TWIST1 and Slug Expression in Oral Cancer Cell Invasion

  • Cho, Kyung Hwa
    • Journal of dental hygiene science
    • /
    • v.17 no.5
    • /
    • pp.433-438
    • /
    • 2017
  • Relative to its incidence, oral cancer has serious negative social effects. The exact causes of oral cancer have not been clarified, but many studies have implicated smoking and drinking. However, the fundamental mechanism of oral cancer causation has yet to be elucidated. Lysophosphatidic acid (LPA) augments epithelial mesenchymal transition (EMT) and development of various cancer cells. However, a detailed mechanistic explanation for LPA-induced EMT and the effects of EMT-promoting conditions on oral squamous cell carcinoma development remain elusive. In the present study, a quantitative reverse transcription polymerase chain reaction was used to analyze TWIST1, Slug, E-cadherin, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) transcript expression. Immunoblotting was used to analyze TWIST1, Slug, E-cadherin, and GAPDH protein expression. siRNAs were used to silence TWIST1 and Slug transcript expression. A matrigel-coated in vitro invasion insert was used to analyze oral cancer cell invasion. The results of the present study show that the expression levels of TWIST1 and Slug, which are EMT factors, were increased by LPA treatment in YD-10B oral squamous cell carcinoma. Conversely, E-cadherin expression was significantly reduced. In addition, transfection of the cells with TWIST1 and Slug siRNA strongly inhibited LPA-induced oral cancer cell invasion. The present study shows that TWIST1 and Slug mediate LPA-induced oral cancer cell EMT and invasiveness. The present study confirmed the mechanism by which LPA promotes oral cancer cell development, with TWIST1 and Slug providing novel biomarkers and promising therapeutic targets for oral cancer cell development.

A New Record and Characterization of Asparagus Purple Spot Caused by Stemphylium vesicarium in Korea

  • Han, Joon-Hee;Shin, Jong-Hwan;Fu, Teng;Kim, Kyoung Su
    • Mycobiology
    • /
    • v.47 no.1
    • /
    • pp.120-125
    • /
    • 2019
  • In 2017, small, elliptical, brownish purple spots on spears and ferns of asparagus were found in fields of Gangwon-do. The isolated fungal species was identified as an ascomycete Stemphylium vesicarium based on morphological characteristics and molecular phylogenic analyses including nucleotide sequences of the internal transcribed spacer (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and cytochrome b (cytb). A pathogenicity test revealed that S. vesicarium was the causal agent of purple spot disease on asparagus. The occurrence of purple spots caused by S. vesicarium on asparagus is the first report in Korea.

Effect of a five-week high-fat diet on serum-lipid composition and LPL mRNA expression in rat skeletal muscles

  • Cheon, Wookwang;Kim, Mijin
    • Korean Journal of Exercise Nutrition
    • /
    • v.17 no.2
    • /
    • pp.49-55
    • /
    • 2013
  • Our purpose was to investigate the effect of a 5-week high-fat diet on the body weight, blood components [triglycerides (TGs), free fatty acids (FFAs), and glucose], and lipoprotein lipase (LPL) mRNA expression in the skeletal muscles of rats. Body weight increased overtime in experimental and control groups without significant differences. In terms of the blood components, the density of TG was significantly lower in the high-fat diet group compared to the control, whereas FFA and glucose levels were similar in the two groups. Although the levels of glyceraldehyde 3-phosphate dehydrogenase(GAPDH) mRNA expression were similar between the groups, LPL mRNA expression was significantly higher in the high-fat diet group than that in the control group. The results of this study suggest that a high-fat diet enhances LPL mRNA expression, as well as possibly increases fat metabolism. For a better understanding of the relationship between diet patterns and fat metabolism, further analysis of genes related to the fat metabolism is warranted.

Effects of Aerobic Exercise upon Cytosolic GAPHD and Mitochondrial MnSOD Activity of Pancreatic Cells in the Type 1 Diabetic Rats (유산소운동이 제1형 당뇨쥐의 췌장 세포질 GAPHD 및 미토콘드리아 MnSOD 활성에 미치는 영향)

  • Lee, Sang-Hak;Yoon, Jin-Hwan
    • 한국체육학회지인문사회과학편
    • /
    • v.51 no.3
    • /
    • pp.437-445
    • /
    • 2012
  • Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and manganese superoxide dismutase (MnSOD) has been hypothesized as a mediator in the activation of multiple pathways implicated in the pathogenesis of diabetic disease. The objective of this study was to understand the mechanism that aerobic exercise activate GAPDH and MnSOD in pancreatic cells. To achieve the purpose of this study, thirty male Sprague-Dawley rats were assigned to control group, diabetic group and diabetic exercise group. 10 rats were forced to exercise according to exercise protocol for 8weeks and 20 rats were untrained for control and diabetic group. Pancreatic tissue were extracted from the each. Expressions of GAPDH and MnSOD in diabetic pancreatic tissues were significantly decreased compare to control group. However, swimming (trained diabetic group) significantly increased expressions of GAPDH and MnSOD compare to diabetic group, respectively. In hyperglycemia, GAPDH and MnSOD in pancreatic cells is activated by aerobic exercise, and this inactivates multiple pathways implicated in the pathogenesis of diabetic disease. In conclusion, these findings suggest that increased activity of GAPDH and MnSOD by exercise have beneficial effects on mitochondrial dysfunction and arresting the progression of diabetic disease.

Development and Evaluation of a SYBR Green Real-time PCR Assay for Canine Cytokine Gene Expression (SYBR Green 실시간 역전사 중합효소연쇄반응을 이용한 개 싸이토카인 유전자 발현의 정량)

  • Yu, Do-Hyeon;Ihn, Dong-Chul;Park, Chul;Park, Jin-Ho
    • Journal of Veterinary Clinics
    • /
    • v.27 no.5
    • /
    • pp.508-513
    • /
    • 2010
  • Cytokines are important mediators of the immune response, and quantitating cytokine mRNA is a highly sensitive and attractive method for measuring cytokine production. The objective of the current study was to develop and validate a SYBR green quantitative real-time reverse transcriptase PCR (qRT-PCR) assay for measuring canine cytokine mRNA. The optimal annealing temperatures ($T_a$) of the designed primers were $62^{\circ}C$ for interleukin (IL)-$1{\beta}$, IL-6 and IL-10; $60^{\circ}C$ for glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and tumor necrosis factor (TNF)-${\alpha}$; and $58^{\circ}C$ for high mobility group box 1 (HMGB1). Primer efficiencies of all primers calculated for standard curve samples were between 97.1% and 102.6%. No evidence of secondary structure or primer-dimer formation was seen via melt-curve analysis or gel electrophoresis. The developed qRT-PCR assays are highly specific and sensitive and can be used to quantify gene expression levels of canine cytokines.

Evaluation of reference genes for RT-qPCR study in abalone Haliotis discus hannai during heavy metal overload stress

  • Lee, Sang Yoon;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.4
    • /
    • pp.21.1-21.11
    • /
    • 2016
  • Background: The evaluation of suitable reference genes as normalization controls is a prerequisite requirement for launching quantitative reverse transcription-PCR (RT-qPCR)-based expression study. In order to select the stable reference genes in abalone Haliotis discus hannai tissues (gill and hepatopancreas) under heavy metal exposure conditions (Cu, Zn, and Cd), 12 potential candidate housekeeping genes were subjected to expression stability based on the comprehensive ranking while integrating four different statistical algorithms (geNorm, NormFinder, BestKeeper, and ${\Delta}CT$ method). Results: Expression stability in the gill subset was determined as RPL7 > RPL8 > ACTB > RPL3 > PPIB > RPL7A > EF1A > RPL4 > GAPDH > RPL5 > UBE2 > B-TU. On the other hand, the ranking in the subset for hepatopancreas was RPL7 > RPL3 > RPL8 > ACTB > RPL4 > EF1A > RPL5 > RPL7A > B-TU > UBE2 > PPIB > GAPDH. The pairwise variation assessed by the geNorm program indicates that two reference genes could be sufficient for accurate normalization in both gill and hepatopancreas subsets. Overall, both gill and hepatopancreas subsets recommended ribosomal protein genes (particularly RPL7) as stable references, whereas traditional housekeepers such as ${\beta}-tubulin$ (B-TU) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes were ranked as unstable genes. The validation of reference gene selection was confirmed with the quantitative assay of MT transcripts. Conclusions: The present analysis showed the importance of validating reference genes with multiple algorithmic approaches to select genes that are truly stable. Our results indicate that expression stability of a given reference gene could not always have consensus across tissue types. The data from this study could be a good guide for the future design of RT-qPCR studies with respect to metal regulation/detoxification and other related physiologies in this abalone species.

A Moonlighting Protein Secreted by a Nasal Microbiome Fortifies the Innate Host Defense Against Bacterial and Viral Infections

  • Gwanghee Kim;Yoojin Lee;Jin Sun You;Wontae Hwang;Jeewon Hwang;Hwa Young Kim;Jieun Kim;Ara Jo;In ho Park;Mohammed Ali;Jongsun Kim;Jeon-Soo Shin;Ho-Keun Kwon;Hyun Jik Kim;Sang Sun Yoon
    • IMMUNE NETWORK
    • /
    • v.23 no.4
    • /
    • pp.31.1-31.18
    • /
    • 2023
  • Evidence suggests that the human respiratory tract, as with the gastrointestinal tract, has evolved to its current state in association with commensal microbes. However, little is known about how the airway microbiome affects the development of airway immune system. Here, we uncover a previously unidentified mode of interaction between host airway immunity and a unique strain (AIT01) of Staphylococcus epidermidis, a predominant species of the nasal microbiome. Intranasal administration of AIT01 increased the population of neutrophils and monocytes in mouse lungs. The recruitment of these immune cells resulted in the protection of the murine host against infection by Pseudomonas aeruginosa, a pathogenic bacterium. Interestingly, an AIT01-secreted protein identified as GAPDH, a well-known bacterial moonlighting protein, mediated this protective effect. Intranasal delivery of the purified GAPDH conferred significant resistance against other Gram-negative pathogens (Klebsiella pneumoniae and Acinetobacter baumannii) and influenza A virus. Our findings demonstrate the potential of a native nasal microbe and its secretory protein to enhance innate immune defense against airway infections. These results offer a promising preventive measure, particularly relevant in the context of global pandemics.