• Title/Summary/Keyword: GAP chemistry

Search Result 296, Processing Time 0.022 seconds

Detection of Influenza A Virus by Interdigitated Nanogap Devices

  • Park, Jimin;Park, Dae Keun;Lee, Cho Yeon;Kang, Aeyeon;Yun, Wan Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.419-419
    • /
    • 2014
  • Interdigitated nanogap device (IND) is an attractive tool for biomolecular detection due to its huge on-off signal ratio, great tolerance to the variation in biochemical environment, and relatively simple implementation processes. Here, we report on the IND-based detection of Influneza A virus by sandwich immunoassay. The INEs were fabricated by photo lithography followed by the in-house chemical lithographic technique for the narrowing the initial gap distance. The surface of the silicon oxide between the two gold electrodes was chemically modified to immobilize primary antibodies for the immuno-specific interaction with the influenza A virus antigen. After immersing the functionalized-IND into the sample solution containing the influenza A virus, the device was exposed to the secondary antibody conjugated Au nanoparticles (Au NPs). The INDs showed a huge jump in the electric conductance when the sample solution contained the influenza A virus of the concentration as low as 10 ng/mL. We hope that this IND-based sensing can be applied to the development of simple and reliable diagnostic means of influenza viruses.

  • PDF

Deposition of CuInSe2 Thin Films Using Stable Copper and Indium-selenide Precursors through Two-stage MOCVD Method

  • Park, Jong-Pil;Kim, Sin-Kyu;Park, Jae-Young;Ok, Kang-Min;Shim, Il-Wun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.853-856
    • /
    • 2009
  • Highly polycrystalline copper indium diselenide (CuInSe2, CIS) thin films were deposited on glass or ITO glass substrates by two-stage metal organic chemical vapor deposition (MOCVD) at relatively mild conditions, using Cuand In/Se-containing precursors. First, pure Cu thin film was prepared on glass or ITO glass substrates by using a single-source precursor, bis(ethylbutyrylacetate)copper(II) or bis(ethylisobutyrylacetato)copper(II). Second, on the resulting Cu films, tris(N,N-ethylbutyldiselenocarbamato)indium(III) was treated to produce CuInSe2 films by MOCVD method at 400 ${^{\circ}C}$. These precursors are very stable in ambient conditions. In our process, it was quite easy to obtain high quality CIS thin films with less impurities and uniform thickness. Also, it was found that it is easy to control the stoichiometric ratio of relevant elements on demands, leading to Cu or In rich CIS thin films. These CIS films were analyzed by XRD, SEM, EDX, and Near-IR spectroscopy. The optical band gap of the stoichiometric CIS films was about 1.06 eV, which is within an optimal range for harvesting solar radiation energy.

Detection of PspA by Interdigitated Nanogap Devices

  • Park, Jimin;Park, Dae Keun;Lee, Cho Yeon;Kang, Aeyeon;Oh, Jihye;Kim, Gyuhee;Lee, Sangho;Yun, Wan Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.268.2-268.2
    • /
    • 2013
  • Nanogap interdigitated electrodes (NIDEs) can serve as an alternative platform for the biomolecular detection [1]. In this work, the NIDEs were adopted in a simple and sensitive detection of Pneumococcal surface protein A (PspA). The NIDEs were fabricated by the combination of photo and chemical lithography. Photolithographically-defined initial gap of about 200 nm was narrowed down to a few tens of nanometers by surface-initiated growth of the initial electrodes (chemical lithography) [2]. Bare silicon oxide surface between the electrodes was chemically modified to immobilize capturing antibodies and, after exposure to the samples, the device was immersed in a solution containing the probe-antibody-conjugated Au nanoparticles (Au NPs). The conductance change accompanied with the Au NP immobilization was interpreted as the existence of PspA. Detection limit of the measurements and further improvement of the detection efficiency were discussed with the results from I-V analysis, scanning electron microscopy, and atomic force microscopy.

  • PDF

Theoretical Study of Thiazole Adsorption on the (6,0) zigzag Single-Walled Boron Nitride Nanotube

  • Moradi, Ali Varasteh;Peyghan, Ali Ahmadi;Hashemian, Saeede;Baei, Mohammad T.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3285-3292
    • /
    • 2012
  • The interaction of thiazole drug with (6,0) zigzag single-walled boron nitride nanotube of finite length in gas and solvent phases was studied by means of density functional theory (DFT) calculations. In both phases, the binding energy is negative and presenting characterizes an exothermic process. Also, the binding energy in solvent phase is more than that the gas phase. Binding energy corresponding to adsorption of thiazole on the BNNT model in the gas and solvent phases was calculated to be -0.34 and -0.56 eV, and about 0.04 and 0.06 electrons is transferred from the thiazole to the nanotube in the phases. The significantly changes in binding energies and energy gap values by the thiazole adsorption, shows the high sensitivity of the electronic properties of BNNT towards the adsorption of the thiazole molecule. Frontier molecular orbital theory (FMO) and structural analyses show that the low energy level of LUMO, electron density, and length of the surrounding bonds of adsorbing atoms help to the thiazole adsorption on the nanotube. Decrease in global hardness, energy gap and ionization potential is due to the adsorption of the thiazole, and consequently, in the both phases, stability of the thiazole-attached (6,0) BNNT model is decreased and its reactivity increased. Presence of polar solvent increases the electron donor of the thiazole and the electrophilicity of the complex. This study may provide new insight to the development of functionalized boron nitride nanotubes as drug delivery systems for virtual applications.

Cultivation Environment in Relation to Good Agricultural Practices in the Major Cultivation Area of Disocorea batatas (우리나라 주요 산약 재배지 GAP와 관련된 재배환경 실태)

  • Cho, Jae-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.4
    • /
    • pp.290-295
    • /
    • 2011
  • This study was carried out to investigate the quality of soil, irrigation water, and status of agrochemicals application in relation to good agriculture practices system in the major cultivation area of Disocorea batatas. The concentrations of heavy metals as Cd, Pb, Cu, and Zn in soils and irrigation waters were lower than those of standard level for Environmental Conservation Act of Soil and Water in Korea. The dominant weed have been appeared Digitaria sanguinalis and Portulaca oleraceamite. The dominant insect pests and plant pathogens have been appeared aphid and anthracnose. Average yearly application of pesticide was 2 to 4 times for herbicide and 4 to 6 times for plant pathogens and insect pests. In order to safety production of medicinal crops could be achieved by proper cultivation management such as minimum application of agro-chemicals, effective use of by-product fertilizer, and technology development of organic farming.

Crystal Molecular Orbital Calculation of the Lanthanum Nickel Oxide by Means of the Micro-Soft Fortran (마이크로-소프트 포트란을 이용한 복합 산화물 결정의 분자 궤도함수 계산)

  • Koo, Hyun-Joo;Lee, Kwang-Soon;Ahn, Woon-Sun
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.9
    • /
    • pp.685-691
    • /
    • 1995
  • EHMACC and EHPC programs written in VAX version to calculate the tight-binding extended Huckel method is converted into the micro-soft fortran available to PC. The band calculation of LaNiO3 unit cell and extended ($2{\times}2{\times}1$) cell with perovskite structure is made by the PC/386 and PC/486. The calculation is also made for the DOS and the COOP. It is supposed that the electronic property of $LaNiO_3$ is semiconductor along to the ${\Gamma}{\rightarrow}H,\;H{\rightarrow}N,\;and\;N{\rightarrow}{\Gamma}(2D)$ direction with band gap about 0u.35 eV, while metal property in ${\Gamma}{\rightarrow}P\;and\;P{\rightarrow}N(3D)$ direction. The oxygen atom property in $LaNiO_3$ is more effectively affected by oxygen atom position than defect of nickel atom.

  • PDF

Synthesis and Photovoltaic Properties of Low Band Gap π-conjugated Polymers Based on 2-pyran-4-ylidene-malononitrile Derivatives (2-pyran-4-ylidene-malononitrile을 기본으로 하는 작은 Band Gap을 가지는 공중합체의 합성 및 광전변환 특성)

  • You, Hyeri;Shin, Woong;Park, Jeong Bae;Park, Sang Jun;Lim, Jun Heok;Kim, Joo Hyun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.273-278
    • /
    • 2009
  • A series of poly[2-(2,6-dimethylpyran-4-ylidene)malononitrile-alt-1,4-bis(dodecyloxy)-2,5-divinylbenzene] (PM-PPV), poly[2-{2,6-Bis-[2-(5-bromothiophen-2-yl)-vinyl]-pyran-4-ylidene}-malononitrile-alt-1,4-bis(dodecyloxy)-2,5-divinylbenzene] (PMT-PPV) and poly[2-[2,6-Bis-(2-{4-[(4-bromophenyl)-phenylamino]-phenyl}-vinyl)-pyran-4-ylidene]-malononitrile-alt-1,4-bis(dodecyloxy)-2,5-divinylbenzene] (PMTPA-PPV) were synthesized by the Heck coupling reaction. The band gap of PM-PPV, PMT-PPV and PMTPA-PPV were 2.18 eV, 1.90 eV and 2.07 eV, respectively. The LUMO energy levels of PM-PPV, PMT-PPV and PMTPA-PPV were 3.65 eV, 3.54 eV and 3.62 eV, respectively and the HOMO energy levels of those were 5.83 eV, 5.61 eV and 5.52 eV, respectively. The photovoltaic devices based on the polymers was fabricated. The efficiency of the solar cells based on PM-PPV, PMT-PPV and PMTPA-PPV were 0.028%, 0.031% and 0.11%, respectively and the open circuit voltage (Voc) was 0.59 V~0.69 V under AM 1.5 G and 1 sun condition ($100mA/cm^2$).

Effect of 2-HEA and EGPA Composition on the Electro-optical Properties of Polymer Dispersed Liquid Crystal (아크릴계 단량체 2-HEA와 EGPA의 조성에 따른 고분자 분산형 액정(PDLC)의 전기광학적 특성 평가)

  • Choi, Jongseon;Kim, Young Dae;Kim, So Yeon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.205-211
    • /
    • 2019
  • Over the past several decades, the polymer dispersed liquid crystal (PDLC) has received particular attention as a material for developing smart window due to their electro-optical switchable properties. In this study, PDLC cells were fabricated using acrylate monomers, namely 2-hydroxyethyl acrylate (2-HEA) and ethylene glycol phenyl ether acrylate (EGPA), and the effect of the monomer composition on their electro-optical properties was investigated. The monomer mixture with a low viscosity (~10 cps) was easily filled between indium tin oxide (ITO) glasses by capillary action at room temperature. PDLC cells prepared using the mixture ratio of 1 : 9 (2-HEA : EGPA) did not show a complete opaque state at a 0 V condition but exhibited unstable electro-optical properties under an electric field. As the LC composition increased in the reaction mixture for PDLC cell preparation, the $V_{th}$ (threshold voltage) and $V_{sat}$ (saturation voltage) values as well as contrast ratio (CR) increased. $V_{th}$ and $V_{sat}$ values also increased with the cell gap thickness. PDLC cells with a $20{\mu}m$ cell gap thickness exhibited higher CR than those with 10 and $40{\mu}m$ cell gap thicknesses. Particularly, PDLC cells prepared using the mixture ratio of 7 : 3 (2-HEA : EGPA) showed excellent electro-optical properties such as a low driving voltage and high contrast ratio.

Synthesis and Photovoltaic Properties of Polymers Based on Cyclopentadithiophene and Benzimidazole Units

  • Song, Su-Hee;Park, Sei-Jung;Kwon, Soon-Cheol;Shim, Joo-Young;Jin, Young-Eup;Park, Sung-Heum;Kim, Il;Lee, Kwang-Hee;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1861-1866
    • /
    • 2012
  • The new semiconducting copolymers with 4,4-dialkyl-$4H$-cyclopenta[2,1-$b$:3,4-$b^{\prime}$]dithiophene and 2,2-dimethyl-$2H$-benzimidazole units were synthesized. The fused aromatic rings, such as cyclopentadithiophene (CPDT) unit, can make the polymer backbone more rigid and coplanar, which induces long conjugation length, narrow band gap, and strong intermolecular ${\pi}-{\pi}$ interaction. The stacking ability was controlled through attaching of linear or branched alkyl side chains. The spectra of PEHCPDTMBI and PHCPDTMBI in the solid films show absorption bands with maximum peaks at 401, 759 and 407, 768 nm, and the absorption onsets at 925 and 954 nm, corresponding to band gaps of 1.34 and 1.30 eV, respectively. The devices comprising PHCPDTMBI with $TiO_X$ showed a $V_{OC}$ of 0.39 V, a $J_{SC}$ of 1.14 $mA/cm^2$, and a $FF$ of 0.34, giving a power conversion efficiency of 0.15%. The PHCPDTMBI with linear alkyl chain on CPDT shows good solubility in organic solvent with higher PCE value than that of PEHCPDTMBI.

Synthesis, Photovoltaic Properties and Side-chain Effect of Copolymer Containing Phenothiazine and 2,1,3-Benzothiadiazole (Phenothiazine과 2,1,3-Benzothiadiazole을 포함한 Copolymer의 합성 및 Side-chain 치환에 따른 Photovoltaic 특성 연구)

  • Yun, Dae-Hee;Yoo, Han-Sol;Seong, Ki-Ho;Lim, Jeong-Ho;Park, Yong-Sung;Wo, Je-Wan
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.487-496
    • /
    • 2014
  • In this study, three kinds of polymers based on phenothiazine-benzothiadiazole were synthesized by a Suzuki coupling reaction, and the various side-chains were substituted at the nitrogen of phenothiazine. The optical and electrochemical properties of synthesized polymers were analyzed. The results indicate that their absorption ranged from 300 to 700 nm, and also confirmed the ideal highest occupied molecular orbital (HOMO) energy level was about -5.4 eV with low band-gap energy. Photovoltaic devices were fabricated using a photoactive layer composed of a blended solution of the polymer and $PC_{71}BM$ in ortho-dichlorobenzene The device with P2HDPZ-bTP-OBT containing the branched side-chain and long chain showed the best performance; the maximum power conversion efficiency of this device was 2.4% (with $V_{OC}$ : 0.74 V, $J_{SC}$ : $6.9mA/cm^2$, FF : 48.0%).