• Title/Summary/Keyword: GALT short version

Search Result 12, Processing Time 0.018 seconds

A Comparative Analysis of Cognitive Levels of 11th Grade Students and Cognitive Levels Required by High School Chemistry I Textbooks (고등학교 2학년 학생들의 인지수준과 화학 I 교과서 내용이 요구하는 인지수준 비교 분석)

  • Kim, Eun-Suk;Park, Kwang-Seo;Oh, Chang-Ho;Kim, Dong-Jin;Park, Kuk-Tae
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.6
    • /
    • pp.645-653
    • /
    • 2004
  • The purpose of this study was to compare and analyze the cognitive levels of 11th grade students and those required in high school chemistry I textbooks standardized by the 7th national education curriculum. For this study, the cognitive development stages of 456 11th grade students were surveyed using short-version GALT (group assessment of logical thinking). Furthermore, 15 basic concepts were extracted from the contents on water and air, 2 units in chemistry I order to analyze the cognitive levels necessary for understanding high school textbooks, using CAT (curriculum analysis taxonomy). The results showed that 52.5% of the surveyed 11th grade students reached the formal operational level, 28.3% transitional levels, and 19.5% concrete operational levels. 68.9% of the academic high school students and 6.6% of the technical high school students reached the formal operational levels, and the ratio of formation was very different in each logics. As a result of the analyzing the cognitive levels needed for understanding chemistry I textbook contents, in spite of a change in national education curriculum, there were no great change in cognitive levels required by scientific concept except some inquiry activities. The cognitive levels in high school chemistry I textbooks by the 7th national education curriculum appeared higher than the cognitive levels of 11th grade student, but cognitive levels of inquiry activities were similar to the cognitive levels of the students. Chemistry teachers thought of chemistry I textbooks by the 7th national education curriculum as desirable because scientific concepts were reduced and a lot of real life materials were adapted. However, they pointed out a problem of difference in contents levels compared with chemistry I textbooks because scientific concepts were greatly reduced in chemistry I textbooks. The cognitive levels required in chemistry I textbooks still appeared higher than those of the students. Consequently, various teaching and learning methods and materials will have to be developed to be suitable for the students' cognitive levels.

Analysis of the Effects of Teaching Method Using Ball-and-Stick Models in the Middle School (중학교에서 공-막대 모형을 이용한 수업의 효과 분석)

  • Jin, Hee-Ja;Park, Kwang-Seo;Kim, Dong-Jin;Kim, Kyong-Mee;Park, Kuk-Tae
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.1
    • /
    • pp.77-84
    • /
    • 2004
  • The purpose of this study was to analyze the controversial points in the concepts of materials in the science textbook of middle school and to provide alternatives of teaching method. For this study, units in connected textbooks were analyzed and the teaching method using ball-and-stick models was developed. The subjects were 130 second graders from a middle school in Seoul, Korea. It aimed to compare the effectiveness of using ball-and-stick models for lesson with the one of traditional lessons, in learning concepts concerning materials by cognitive levels and to investigate the difference of scientific concept formation about concepts concerning materials by their cognitive levels between experimental group and control group by using concept formation questionnaires. Before the instructions, a short-version GALT was administered. After instructions, the posttest of concepts and attitude test connected with science subject were administered, and 10 months later, the posttest of concepts was administered to analyze the long-term memory effects. According to the results, the experimental group using the ball-and-stick models had significantly higher scores at conceptual understanding and long-term memory effects than the control group and improved the attitude relevant to science subject, and also had affirmative effects in attitude for science and science work. When analyzing the results according to the cognitive level, the long-term memory effects was high in the concrete operational stage students. From the results of this study, middle school students that are more concrete operational stage and transitional stage than formal operational stage elevates interesting in studying by using ball-and-stick models and making material form concretely. It would be effective in helping the students develope the correct concepts by connecting real world as materials and the particle world as atom.