• Title/Summary/Keyword: GAIT CYCLE

Search Result 150, Processing Time 0.025 seconds

The Effect of Kinesio Taping on the Quadriceps Femoris to the Gait Characteristics (대퇴사두근에 키네시오 테이핑 적용이 보행특성에 미치는 효과)

  • Jung, Byeong-Ok
    • Journal of Korean Physical Therapy Science
    • /
    • v.15 no.3
    • /
    • pp.65-72
    • /
    • 2008
  • Background : The purpose of present study was to investigate the effect of quadriceps femoris taping in normal gait using 3D motion capture technique. Method : Twenty healthy volunteers, have no musculoskeletal problems, were recruited as subjects for this study. In experimental group, 20 healthy young(males 10 and females 10) were included. The subjects were assessed during two conditions: control tape(no muscle stretched) and quadriceps (muscle stretched)taping application. To obtain the dynamic data, we captured the motion of subject attached markers without taping during repeated gaits five times or more in 7 m Capture volume of gait analysis center. The result was obtained as a mean value in three times. After taping on quadriceps femoris, the same procedure was carried out. Statistical analysis were performed using statistical software packagess SPSS WIN 12.0(SPSS, Chicago, IL, USA). Differences were tested for statistical significance using paired t-test, independent t-test, chi-squared test for comparisons between the muscle stretched and no muscle stretched. Results : The date of 20 subjects who carried out the whole experimental course were statistically analyzed. 1. gait velocity was showed that muscle stretched group had more significantly increased than no muscle stretched group(p<.05). 2. step length was showed that muscle stretched group had more significantly increased than no muscle stretched group(p<.05). 3. cadens was showed that muscle stretched group had more significantly increased than no muscle stretched group(p<.05). Conclusion : kinesio taping on quadriceps femoris promoted cadence, gait velocity, step length in normal subject (muscle stretched) group.

  • PDF

Evaluation of Ergonomic Performance of Medical Smart Insoles

  • Yi, Jae-Hoon;Lee, Jin-Wook;Seo, Dong-Kwon
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.2
    • /
    • pp.215-223
    • /
    • 2022
  • Objective: This study was to resolve the limitations of the experimental environment and to solve the shortcomings of the method of measuring human gait characteristics using optical measuring instruments. Design: A cross-sectional study. Methods: Fifteen healthy adults without a history of orthopedic surgery on the lower extremities for the past 6 months were participated. They were analyzed gait variables using the smart guide and the 3D image analysis at the same time, and their results were compared. Visual-3D was used to calculate the analysis variables. Results: The reliability and validity of the data according to the two measuring instruments were found to be very high; gait speed(0.85), cycle time(0.99), stride time of both feet(0.98, 0.97) stride legnth of both feet(0.86, 0.88) stride per minute of both feet(0.99, 0.96), foot speed of both feet(0.90, 0.91), step time of both feet(0.77, 0.71), step per minute(0.72, 0.74), stance time of both feet(0.96, 0.97), swing time of both feet(0.93, 0.79), double step time(0.81), initial double step time(0.84) and terminal step time(0.76). Conclusions: In the case of the smart insole, which measures human gait variables using the pressure sensor and inertial sensor inserted in the insole, the reliability and validity of the measured data were found to be very high. It can be used as a device to replace 3D image analysis when measuring pathological gait.

Influence of mobile phone texting on gait parameters during ramp ascent and descent

  • Kim, Hyunjin;Park, Jaemyoung;Cha, Jaeyun;Song, Chang-Ho
    • Physical Therapy Rehabilitation Science
    • /
    • v.3 no.1
    • /
    • pp.43-48
    • /
    • 2014
  • Objective: The purpose of this study was to examine the influences on gait features during mobile phone use while ramp walking. Design: Cross-sectional study. Methods: Thirty-three healthy adult subjects performed four walking conditions on an outside ramp with a 5 m length, 1.5 m width, and a $5^{\circ}$ angle. All participants were touch screen mobile phone users. Four walking conditions were used: 1) ramp ascent, 2) ramp descent, 3) texting during ramp ascent, and 4) texting during ramp descent. In conditions 3) and 4), subjects texted the words of "Aegukga"-the song of patriotism-while walking. Upon the signal of start, the subjects walked the ramp during texting. Gait parameters were measured at the length of 3 m excluding 1 m of the start and end of the total length. Each situation was repeated three times for each subject, and mean values were calculated. For gait examination, a gait analyzer was used (OptoGait). Results: Subjects ranged in age from 23 to 38 years (mean age, 27.73). Eighty-three percent of subjects in our study had experienced an accident during mobile phone use. Texting on a mobile phone while walking significantly decreased ramp gait, speed, cadence, stride length, step length, and single support (p<0.05) and significantly increased stride time, step time, gait cycle, and double support (p<0.05). There was a significant difference in cadence, step length, stride time, step time, and single support during ramp ascent and descent (p<0.05). Conclusions: Texting on a mobile phone while walking significantly decreased gait quality.

The reliability test of a smart insole for gait analysis in stroke patients

  • Seo, Tae-Won;Lee, Jun-Young;Lee, Byoung-Hee
    • Journal of Korean Physical Therapy Science
    • /
    • v.29 no.1
    • /
    • pp.30-40
    • /
    • 2022
  • Background: This study analyzed the reliability of smart guides for gait analysis in patients with stroke. Design: Cross-sectional study. Methods: The participants of the study were 30 patients with stroke who could walk more than 10 m and had an MMSE-K test score of ≥24. Prior to the experiment, the subjects or their guardians entered their demographic characteristics including gender, age, height, weight into the prepared computer. The experiment was conducted in a quiet, comfortable, and independent location, and the patient was reminded of the equipment description, precautions, and safety rules for walking. A smart insole was inserted into the shoes of the patients and the shoes were put on before the patients walked three times on the 5-m gait analysis system mat installed in the laboratory. Results: The reliability of the equipment was compared with that of the gait analysis system, and the results of this study are as follows: among the gait analysis items, velocity had an ICC=0.982, the cadence had an ICC=0.905, the swing phase on the side of the gait cycle had an ICC=0.893, the swing phase on the side of the gait had an ICC=0.839, that on the non-affected side had an ICC=0.939, single support on the affected side had an ICC=0.812, and support on the non-affected side had an ICC=0.767. Conclusion: The results of this study indicate no statistical difference between the smart insole and the gait analysis system. Therefore, it is believed that real-time gait analysis through smart insole measurement could help patients in rehabilitation.

Effect of Trans cranial Directed Current Stimulus on Temporal and Spatial Walking Capacity for Hemiparalysis Patients (경 두개 직류자극이 뇌졸중 환자의 시간적, 공간적 보행능력에 미치는 영향)

  • Lee, Yeon Seop;Jun, Hun Ju
    • Journal of Korean Physical Therapy Science
    • /
    • v.29 no.3
    • /
    • pp.75-84
    • /
    • 2022
  • Background: This study was to investigate the effect of non-invasive transcranial direct current stimulation due to hemiplegic patients due to stroke on temporal and spatial gait ability. Design: Randomized sham controlled trial. Methods: For the study method, 42 patients with hemiplegia due to stroke were randomly assigned to 14 patients each, and the general walking group, tDCS walking group, and tDCS (sham) walking group were subjected to 5 times a week, 30 minutes a day, and 6 weeks. In the temporal gait variables of hemiplegic patients due to stroke, the effect of the gait time, gait cycle, single support, double support, swing phase, stance phase, gait speed, cadence were measured. In spatial variables, one step length and one step length were measured. Results: As a result of the study, the EG group significantly increased in the step time, gait velocity, and cadence of the paralysis side in the comparison of temporal walking variables between groups according to the application of tDCS of walking ability in hemiplegic patients due to stroke patients(p<.05). In the change in spatial walking variables between groups according to the application of tDCS, the step length and stride length of the EG group showed a significant increase. Both the comparison of temporal and spatial symmetry walking variables between groups according to tDCS application was not significant(p>.05) Conclusion: As a result, tDCS has an effective effect on the improvement of the gait ability of stroke patients. In particular, it is an effective method of physical therapy that can improve the cadence and speed of gait, which can be combined with the existing gait training to effectively increase the gait of hemiplegia due to stroke patients.

Biomechanical Analysis of the Elderly Gait with a Walking Assistive Device (노인의 보행보조기구 사용 보행시 보행패턴의 변화연구)

  • Yoon, Suk-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.1-9
    • /
    • 2007
  • Walking is not only an essential component of the human mobility, but also is a good exercise. Inability to walk freely can reduce an individual's quality of life and independence substantially. Being a relatively low impact activity, walking is particularly good for the elderly and research has shown that regular walking in the elderly reduces the chance of fall-related injuries and mental diseases as well. In spite of the documented benefits of regular walking, it is still difficult to walk without the aid of assistive devices for the frail elderly who have lower extremity problems. Assistive walking devices(AWD), such as crutches, canes, hiking-poles, T-Poles and walkers, are often prescribed to the elderly to make their walking be safe and efficient. Many researchers have demonstrated the effects of AWDs such as reducing lower extremity loading, improved dynamic/gait stability, yet, no study has been done for gait pattern when the elderly gait with AWDs. Therefore, the purpose of this study was to examine whether T-Poles, one of the AWDs, change the elderly gait pattern. Eight community-dwelling female elderly participated in this study. Laboratory kinematics during walking with T-Poles(PW) and with out T-Poles(NPW) was assessed. PW showed significant increase in step width, stride length, gait velocity and decrease in swing time. No significances were found in lower body joint angles but meaningful trend and pattern were found. Maybe the reason was due to the participants. Our participants were healthy enough so that the effect of T-Poles was minimum. PW also showed typical gait phases which are no single support phase during a gait cycle. It indicates that walking with T-Poles may guarantee safe and confident walking to the frail elderly.

A Study of Motor Expertise about Kinematic and Kinetic Characteristics of Lower Extremity in the Seokmun Ilwol Martial Art Yin-yang Bo Gait Pattern (석문일월무예 음양보법의 숙련성에 따른 보행 패턴의 하지 운동학 및 운동역학적 특성)

  • Park, Bok-Hee;Kim, Ky-Hyoung
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.3
    • /
    • pp.239-248
    • /
    • 2014
  • The purpose of this study was to quantify kinematic and kinetic characteristics of Yin-yang Bo gait according to their motor expertise, one of the Seokmun Ilwol martial art gait patterns. Yin-yang Bo gait pattern shows initial forefoot contact instead of heel contact, and increased time of stance phase time, internal-external rotation of ankle-knee-hip joints and pelvic. It aims to produce and store the more energy through continuous homeostasis of center of gravity (COG) and performance of stretch-shortening cycle. Some of these characteristics also were similar to the gait modification strategies for reducing knee adduction moment such as toe-out progression, medial thrust, internal rotation of hip joint. To identify the characteristics, four factors of expert Yin-yang Bo gait performance group were compared to that of none expert group; 1) angles of COG displacement and rotation 2) distal joint pre-rotation in internal-external rotation of ankle-knee-hip joints and pelvic, 3) invariability pelvic potential and pelvic segment total energy 4) knee abduction moment. Six healthy(three male) subjects participated in the experiment to perform Yin-yang gait pattern. Three-dimensional and force plate data were collected. Kinematic and kinetic data were compared between two groups using t-tests. Results showed that 1) the peak point of COG internal rotation angle was reduced in expert group, 2) kneeexternal and hip joint -internal and pelvic rotation angle peak frames were more near points in expert group.

The Effect of Gait Exercise Using a Mirror on Gait for Normal Adult in Virtual Reality Environment: Gait Characteristics Analysis (가상현실환경에서 정상성인의 거울보행이 보행특성에 미치는 영향)

  • Lee, Jae-Ho
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.3
    • /
    • pp.233-246
    • /
    • 2022
  • Purpose : The study aims to determine the effects of virtual and non-virtual realities in a normal person's mirror walk on gait characteristics. Methods : Twenty male adults (Age: 27.8 ± 5.8 years) participated in the study. Reflection markers were attached to the subjects for motion analysis, and they walked in virtual reality environments with mirrors by wearing goggles that showed them the virtual environments. After walking in virtual environments, the subjects walked in non-virtual environments with mirrors a certain distance away after taking a 5 min break. To prevent the order effect caused by the experiential difference of gait order, the subjects were randomly classified into groups of 10 and the order was differentiated. During each walk, an infrared camera was used to detect motion and the marker positions were saved in real time. Results : Comparison between the virtual and non-virtual reality mirror walks showed that the movable range of the leg joints (ankle, knee, and hip joints), body joints (sacroiliac and atlantoaxial joints), and arm joints (shoulder and wrist joints) significantly differed. Temporal characteristics showed that compared to non-virtual gaits, the virtual gaits were slower and the cycle time and double limb support time of virtual gaits were longer. Furthermore, spacial characteristics showed that compared to non-virtual gaits, virtual gaits had shorter steps and stride lengths and longer stride width and horizontally longer center of movement. Conclusion : The reduction in the joint movement in virtual reality compared to that in non-virtual reality is due to adverse effects on balance and efficiency during walking. Moreover, the spatiotemporal characteristics change based on the gait mechanisms for balance, exhibiting that virtual walks are more demanding than non-virtual walks. However, note that the subject group is a normal group with no abnormalities in gait and balance and it is unclear whether the decrease in performance is due to the environment or fear. Therefore, the effects of the subject group's improvement and fear on the results need to be analyzed in future studies.

Spatiotemporal characteristics of stroke patients gait (뇌졸중 환자에서 보행의 시공간적 특징)

  • Lee, Sangkwan;Choi, Sanho;Oh, Jaegun;Lee, Ilsuk;Park, Kee-eon;Hong, Haejin;Sung, Kang-keyng
    • The Journal of the Society of Stroke on Korean Medicine
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • The following study reviewed the walking patterns of stroke patients with hemiplegia, which is called hemiplegic gait of stroke patients. Focusing is given to the changes in the distance and temporal factors of walking, which is called spatiotemporal characteristics, throughout the walking cycle. First, we introduced the definitions of essential terms related to gait and its measure. Second, we reviewed the spatiotemporal characteristics of hemiplegic gait. A main issue was that hemiplegic gait showed significant deviations from normal healthy gait. Although hemiplegia is primarily associated with unilateral motor disorder, changes in almost all spatiotemporal parameters used to assess walking were evident on both the involved and uninvolved sides of the body. Last, we reviewed the changes of spatiotemporal parameters of hemiplegic gait according to the prognosis or status of stroke patients, which may help to give a specific intervention for rehabilitation of stroke.

  • PDF

Effects of Visual Feedback Treadmill Gait Training Program Combined with Virtual Reality Technology and a Force Plate Measurement System on Gait Ability and Quality of Life in Stroke Patients (가상현실과 힘판을 통한 시각적 되먹임 트레드밀 보행훈련이 뇌졸중 환자의 보행능력과 삶의 질에 미치는 영향)

  • Lee, Dong-Ryul
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.3
    • /
    • pp.363-373
    • /
    • 2020
  • The purpose of this study was to improve the gait ability and quality of life of stroke patients by combining virtual reality technology and a visual feedback gait training program with entertainment elements. Ten stroke patients with circumduction gait were selected. The visual feedback treadmill gait training program using virtual reality technology and a force plate measurement system was conducted 30 minutes a day, 5 days a week, with 25 sessions in 5 weeks. To investigate the effects of this gait training program, evaluations using the joint range-of-motion test, muscle activity tests, Berg balance scale (BBS), gait analysis, and stroke-specific quality-of-life scale (SS-QOL) were performed before and after intervention. Statistically significant differences were found in the joint range of motion and muscle activity of the affected side from the initial swing phase to the mid-swing phase of the gait cycle, dynamic balance, gait function, and quality of life (p <0.05). The results of this study indicate that the gait training program improved the foot drop, muscle activity, dynamic balance, and gait ability of stroke patients with circumduction gait, thereby improving the quality of life of the patients. Therefore, we recommend the application of the visual feedback treadmill gait training program using virtual reality technology and a force plate measurement system to improve gait ability and quality of life of stroke patients with circumduction gait.