• Title/Summary/Keyword: GAIT CYCLE

Search Result 150, Processing Time 0.024 seconds

The Analysis of Muscle Activities on the Lower Limb during Wearing Functional Insole (다기능성 인솔 착용 시 하지의 근활성도 분석)

  • Park, Jae-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.3
    • /
    • pp.327-336
    • /
    • 2010
  • The purpose of this study was to analyze muscle activities on functional insole with diet effect. Originally, ten healthy female subjects with an average age of 23.2 year(S.D=1.1), weight of 49.7 kg(S.D=4.9), height of 163.2 cm(S.D=3.5) and a shoe size of 237.5 cm(S.D=4.9) were participated in this experiment. Ten healthy females walked on a treadmill(speed=about 4.2 km/h) wearing two different insole types. Muscle activities data was collected using the EMG operating system. The surface EMG signal for tibialis anterior(TA), gastrocnemius(GA), vatus lateralis(VL) and biceps femoris(BF) were acquired at the RMS(10 Hz, 350 Hz) using Noraxon Telemyo DTS system(Noraxon inc, USA). This study processed the data using the Windows SPSS ver.17.0 to get an independent t-test, with the setting, p<.05. Analysis of muscle activity were measured and calculated during walking. The results are as follow: Functional insole wearing were increased muscle activities significantly from Tibialis anterior(TA) during total gait cycle. Normal distribution was demonstrated in total step of stances period. One foot standing position showed decreased muscle activity. Two foot standing position was demonstrated with gastrocnemius and biceps femoris. As a result of the analysis, Functional insole will inerease the diet effect in the use of four muscle groups.

Development of Fall Inducement System based on Pedestrian Biological Data for Fall Reproduction (낙상 재현을 위한 보행자 생체 정보 기반의 낙상 유도 시스템 개발)

  • Lee, Jong-il;Han, Jong-Boo;Koo, Jae Wan;Lee, Seokjae;Sohn, Dong-Seop;Seo, Kap-Ho
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.3
    • /
    • pp.286-292
    • /
    • 2020
  • This paper is about a fall inducement system for guiding like a real fall. Reliable fall data can be used as an essential element in developing effective fall protection devices. We can get this data if the induced fall is very realistic. The proposed system analyzes gait characteristics and determines when to fall based on the pedestrian's biometric data. To estimate the fall inducement time, an active estimation algorithm was proposed using different biometric values for each pedestrian. The proposed algorithm is designed to response actively to the ratio of gait cycle and a stance period. To verify this system, an experimental environment was implemented using a multi-rail treadmill equipped with a ground reaction force measurement device. An experiment was conducted to induce falls to pedestrians using a fall inducement system. By comparing the experimental scene to the video of the actual fall, it has been confirmed that the proposed system can induce a reliable fall.

A Position based Kinematic Method for the Analysis of Human Gait

  • Choi Ahn Ryul;Rim Yong Hoon;Kim Youn Soo;Mun Joung Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1919-1931
    • /
    • 2005
  • Human joint motion can be kinematically described in three planes, typically the frontal, sagittal, and transverse, and related to experimentally measured data. The selection of reference systems is a prerequisite for accurate kinematic analysis and resulting development of the equations of motion. Moreover, the development of analysis techniques for the minimization of errors, due to skin movement or body deformation, during experiments involving human locomotion is a critically important step, without which accurate results in this type of experiment are an impossibility. The traditional kinematic analysis method is the Angular-based method (ABM), which utilizes the Euler angle or the Bryant angle. However, this analysis method tends to increase cumulative errors due to skin movement. Therefore, the objective of this study was to propose a new kinematic analysis method, Position-based method (PBM), which directly applies position displacement data to represent locomotion. The PBM presented here was designed to minimize cumulative errors via considerations of angle changes and translational motion between markers occurring due to skin movements. In order to verify the efficacy and accuracy of the developed PBM, the mean value of joint dislocation at the knee during one gait cycle and the pattern of three dimensional translation motion of the tibiofemoral joint at the knee, in both flexion and extension, were accessed via ABM and via new method, PBM, with a Local Reference system (LRS) and Segmental Reference system (SRS), and then the data were compared between the two techniques. Our results indicate that the proposed PBM resulted in improved accuracy in terms of motion analysis, as compared to ABM, with the LRS and SRS.

Repeatability of a Multi-segment Foot Model with a 15-Marker Set in Normal Children

  • Kim, Eo Jin;Shin, Hyuk Soo;Lee, Jae Hee;Kyung, Min Gyu;Yoo, Hyo Jeong;Yoo, Won Joon;Lee, Dong Yeon
    • Clinics in Orthopedic Surgery
    • /
    • v.10 no.4
    • /
    • pp.484-490
    • /
    • 2018
  • Background: The use of three-dimensional multi-segment foot models (3D MFMs) is increasing since they have superior ability to illustrate the effect of foot and ankle pathologies on intersegmental motion of the foot compared to single-segment foot model gait analysis. However, validation of the repeatability of the 3D MFMs is important for their clinical use. Although many MFMs have been validated in normal adults, research on MFM repeatability in children is lacking. The purpose of this study is to validate the intrasession, intersession, and interrater repeatability of an MFM with a 15-marker set (DuPont foot model) in healthy children. Methods: The study included 20 feet of 20 healthy children (10 boys and 10 girls). We divided the participants into two groups of 10 each. One group was tested by the same operator in each test (intersession analysis), while the other group was tested by a different operator in each test (interrater analysis). The multiple correlation coefficient (CMC) and intraclass correlation coefficient (ICC) were calculated to assess repeatability. The difference between the two sessions of each group was assessed at each time point of gait cycle. Results: The intrasession CMC and ICC values of all parameters showed excellent or very good repeatability. The intersession CMC of many parameters showed good or better repeatability. Interrater CMC and ICC values were generally lower for all parameters than intrasession and intersession. The mean gaps of all parameters were generally similar to those of the previous study. Conclusions: We demonstrated that 3D MFM using a 15-marker set had high intrasession, intersession, and interrater repeatability in the assessment of foot motion in healthy children but recommend some caution in interpreting the hindfoot parameters.

Gait Phases Detection from EMG and FSR Signals in Walkingamong Children (근전도와 저항 센서를 이용한 보행 단계 감지)

  • Jang, Eun-Hye;Chi, Su-Young;Lee, Jae-Yeon;Cho, Young-Jo;Chun, Byung-Tae
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.207-214
    • /
    • 2010
  • The aim of this study was to investigate upper and lower limb muscle activity using EMG(electromyogram) sensors while walking and identify normal gait pattern using FSR(force sensing resistor) sensor. Fifteen college students participated in this study and their EMG and FSR signal were measured during stopping and walking trials. EMG signals from upper(pectoralis major and trapezius) and lower limbs(rectus femoris, biceps femoris, vastus medialis, vastus lateralis, semimembranosus, semitendinosus, soleus, peroneus longus, gastrocnemius medialis, and gastrocnemius lateralis) were obtained using the surface electrodes. FSR measured pressures on 8 areas of the sole of the foot during walking. EMG results showed that all muscle activities except for vastus lateralis and semimembranosus during walking had higher amplitudes than stopping. Additionally, muscle activities associated with stance and swing phase during walking were identified. Results on FSR showed that stance and swing phases were detected by FSR signals during a gait cycle. Eight gait phases-initial contact, loading response, mid stance, terminal stance, pre swing, initial swing, mid swing, and terminal swing- were classified.

  • PDF

Biomechanical Alterations in Gait of Stair Decent with Different Treads during Pregnancy (임신기간 중 계단의 단너비에 따른 임산부 양발 보행의 생체역학적 변화)

  • Hah, Chong-Ku
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.205-215
    • /
    • 2009
  • The purpose of this study is to investigate alterations of pregnant gait by means of 3 different treads of stairs. 9 subjects(body masses; $59.41{\pm}7.49$, $64.03{\pm}6.65$, $67.26{\pm}7.58$, heights; $160.50{\pm}6.35$ ages; $31.22{\pm}2.99$; parity; $1.67{\pm}0.71$) participated in three experiments that were divided by physiological symptoms(the early(0-15 weeks), middle(16-27 weeks) and last(18-39 weeks), and walked at self-selected pace on 4 staircases 3 trials. As extending the pregnancy period, cadence was shorter but cycle time was longer more and more and the difference of maximum and minmum moments between right and left knee joint moment was smaller. With the treads of stair decent lengthening, speed and stride lengths were increased. As extending the treads of stair decent, joint moments of both feet were particular traits, hip joint was asymmetric but joint moments of knee and ankle were symmetric. These findings may account for relation between the treads of stair and moments and suggest that women may adapt their gait to maximize stability and to control gait motion for themselves in pregnant women.

The Prediction System of Emotional Reaction to Gaits Using MAX SCRIPT (맥스 스크립트를 이용한 감성적 걸음걸이 예측 시스템)

  • Jeong, Jae-Wook
    • Science of Emotion and Sensibility
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • A perceptual reaction to human being's gaits has "regularity" that possibly obtains sympathy among people. This thesis is in the vein of the study that performs the research on the quantificational extraction of the regularity, reconstitute the result, and apply it to controlling behavior. The purpose of this thesis lies in assuring the validity of the future research by demonstrating the following hypothesis: when the physical numerical values of the gait "A" whose perceptual reaction is "a" and those of the gait "B" whose perceptual reaction is "b" are arbitrarily blended, the perceptual reaction to this blended gait also corresponds to the blend of "a" and "b", "a/b". I blended the samples of two types of gaits in the form of Bipeds using the EAM made by 3D Studio Max Script. Blending outcomes were obtained successfully for four times out of the six tries in total. It implies that without utilizing other methods such as Motion Capturing, the basic Bipeds data itself has an enough capability to generate various gaits of Bipeds. Although the present research targets only the Bipeds samples equipped with the 1Cycle moving condition of arms and legs, I acknowledge that a tool that makes blending possible under various moving conditions is necessary for a completed system.

  • PDF

Differences in the Length Change Pattern of the Medial Gastrocnemius Muscle-Tendon Complex and Fascicle during Gait and One-legged and Two-legged Vertical Jumping (보행과 한발·두발 수직점프 수행 시 내측비복근 근-건 복합체와 근섬유다발의 길이 변화 패턴의 차이)

  • Lee, Hae-Dong;Han, Bo-Ram;Kim, Jin-Sun;Oh, Jeong-Hoon;Cho, Han-Yeop;Yoon, So-Ya
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.2
    • /
    • pp.175-182
    • /
    • 2015
  • Objective : The purpose of this study was to investigate difference in fascicle behavior of the medial gastrocnemius during the locomotion with varying intensities, such as gait and one-legged and two-legged vertical jumping. Methods : Six subjects (3 males and 3 females; age: $27.2{\pm}1.6yrs.$, body mass: $62.8{\pm}9.8kg$, height: $169.6{\pm}8.5cm$) performed normal gait (G) at preferred speed and maximum vertical jumping with one (OJ) and two (TJ) legs. While subjects were performing the given tasks, the hip, knee and ankle joint motion and ground reaction force was monitored using a 8-infrared camera motion analysis system with two forceplates. Simultaneously, electromyography of the triceps surae muscles, and the fascicle length of the medial gastrocnemius were recorded using a real-time ultrasound imaging machine. Results : Comparing to gait, the kinematic and kinetic parameters of TJ and OJ were found to be significantly different. Along with those parameters, change in the medial gastrocnemius (MG) muscle-tendon complex (MTC) length ($50.57{\pm}6.20mm$ for TJ and $44.14{\pm}5.39mm$ for OJ) and changes in the fascicle length of the MG ($18.97{\pm}3.58mm$ for TJ and $20.31{\pm}4.59mm$ for OJ) were observed. Although the total excursion of the MTC and the MG fascicle length during the two types of jump were not significantly different, however the pattern of length changes were found to be different. For TJ, the fascicle length maintained isometric longer during the propulsive phase than OJ. Conclusion : One-legged and two-legged vertical jumping use different muscle-tendon interaction strategies.

Comparison of Lower Limb Muscle Activities by Various Angles of a Medio-lateral Ramp During Gait

  • Lee, Sang-Yeol;Ahn, Soo-Hong
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.3
    • /
    • pp.93-98
    • /
    • 2017
  • PURPOSE: This study investigated the activities of lower limb muscles according to the angle of a medio-lateral ramp while walking to promote awareness of the risks associated with a medio-lateral ramp. METHODS: This study was conducted on 20 healthy male adults. The muscle activities of the vastus medialis oblique (VMO), vastus lateralis oblique (VLO), tibialis anterior (TA) and peroneus longus (PL) were measured while the subjects were walking on a 3 m medio-lateral ramp. Five angles (flat, $2^{\circ}$, $5^{\circ}$, $10^{\circ}$, and $15^{\circ}$) were selected for the angle conditions of the experiment on a medio-lateral ramp. The activities were measured during the stance phase only in the middle cycle of a three-cycle walking experiment. The mean value obtained from the three walking tests was used for the analysis. RESULTS: Results showed that walking on a mediolateral ramp required more muscle activities than walking on a flat surface, through which balanced walking was achieved. CONCLUSION: Walking on a medio-lateral ramp requires proper muscle activation and control, without which the risks of injury to the joints of the lower limbs and falls are likely to increase. Therefore, special attention should be given to older people and the disabled under the condition of traversing a ramp.

A Study on the Functional Electrical Stimulation (기능적 전기 자극에 대한 고찰)

  • Lim, Jong-Soo;Kim, Soon-Hee;Song, Young-Wha
    • Journal of Korean Physical Therapy Science
    • /
    • v.6 no.4
    • /
    • pp.187-199
    • /
    • 1999
  • Functional Electrical Stimulation (FES) is used for muscle reeducation, reduction of spasticity, delay of atrophy, and muscle strengthening. FES stronger stimulation than other forms of electrical stimulation. The efficacy of FES in improving function has been substantiated in the literature. Treatment programs employing FES - activation of muscular tissue through the intact peripheral nervous system - can be broken into five major categories, according to the goal of treatment. These broad areas would include the use of FES to: (1) a direct excitation onto the alpha motoneuron, through peripheral stimulation of the Ia myotatic sensory system and ascending afferent information, which will be integrated at conscious and subconscious level of the CNS. (2) The quality of a stimulated muscle contraction is determined by combination of many parameters, including stimulus amplitude, pulse duration, stimulus frequency, and duty cycle. (3) A unit that has a pulse duration between 200 and $400{\mu}sec$ will be more than adequate for FES applications. (4) The neuromuscular plasticity is critically important to return of function using muscle re-education and facilitation applications. (5) Prior to using FES as an electrical orthosis, the patient should build up endurance in the muscles to be stimu1ated during the gait cycle.

  • PDF