• Title/Summary/Keyword: GAC adsorption

Search Result 130, Processing Time 0.024 seconds

Temperature Characteristics of the Modified GAC by Microwave Irradiation and Benzene Adsorption (마이크로파 조사에 따른 개질화 활성탄의 온도특성 및 벤젠흡착)

  • Choi Sung-Woo;Kim Yoon-Kab
    • Journal of Environmental Science International
    • /
    • v.15 no.6
    • /
    • pp.579-586
    • /
    • 2006
  • The purposes of this paper were to monitor the temperature rising courses and spark discharge of the modified granular activated carbon (GAC) by microwave (MW) irradiation and to evaluate absorption of benzene. The GAC coated on $SiO_2$, boron, talc, ferrite was named as the modified GAC. Thermal and spark discharge measurement of virgin GAC and modifed GAC has been carried out using a MW device operating at 2450 MHz under various energy conditions. The results of this paper as follows. First, the modified GAC is more efficient than the virgin GAC in temperature control. Temperature gradient of the modified GAC is more lower than that of virgin GAC. The temperature gradient of GAC was observed in the following order : virgin GAC, Mn-Zn ferrite/GAC, Ni-Zn ferrite,/GAC, $SiO_2/GAC$, Boron/GAC, Talc/GAC. Second, the spark discharge of the modified GAC was diminished, compared with that of virgin GAC. Because of its excellent electrical insulating properties, the coating material prevents the spark discharge. Finally, the benzene adsorption capacity of the modified GAC decreased due to diminishing of adsorption site by the coating material. Considering the temperature gradient and spark discharge of GAC, the GAC coated $SiO_2$ would be appropriate absorbent under irradiation of MW.

A Study on the Characteristics of Activated Carbons Supported Metal by Microwave Irradiation (마이크로파 조사에 따른 금속이 담지 된 활성탄의 특성 연구)

  • Kim, Sung-Wook;Kim, Jung-Bae;Choi, Sung-Woo
    • Journal of Environmental Science International
    • /
    • v.18 no.5
    • /
    • pp.501-508
    • /
    • 2009
  • In this study, the characteristics of granular activated carbon (GAC) supported metal was investigated in an area influenced by flame discharge and temperature variation during irradiating microwave. The modified GAC was formulated by impregnating metal hydroxides of nickel (Ni/GAC), barium (Ba/GAC), copper (Cu/GAC), zinc (Zn/GAC), cobalt (Co/GAC) and lanthanum (La/GAC). Ba/GAC was selected as it showed lack of spark discharge and temperature increasing aspects. Comparison of adsorption and desorption amount of GAC and Ba/GAC showed that adsorption and desorption rate of the GAC were higher than those of Ba/GAC. The results show that the presence of barium can decrease adsorption/desorption rate because of plugging pore of GAC. Toluene regeneration rate of Ba/GAC was better than that of GAC due to barium loading. Finally, GAC with barium can be controled a rapid increasing temperature and spark discharge, increased the regeneration rate of toluene during desorption by irradiating microwave.

Adsorption of phenol on metal treated by granular activated carbon (금속 침적처리에 따른 입상활성탄의 페놀흡착)

  • Kang, Kwang Cheol;Kim, Jin Won;Kwon, Soo Han;Kim, Seung Soo;Baik, Min Hoon;Choi, Jong Won
    • Analytical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.193-197
    • /
    • 2007
  • In this study, the effect of metal treatment on granular activated carbon (GAC) was investigated in the context of phenol adsorption. Cobalt(II) nitrate, and zinc(II) nitrate solution were used for metal treated. The specific surface area and the pore structure were evaluated from nitrogen adsorption data at 77 K. The phenol adsorption rates onto GAC were measured by UV-Vis spectrophotometer. Iodine adsorption capacity of Co-GAC is much better then that of the GAC. The Co-GAC with mesopore is more efficient than other adsorbents for the adsorption of polymer such as methyleneblue. The adsorption capacity of reference-GAC and metal-GAC were increased in order of Co-GAC>Zn-GAC>Reference-GAC, in spite of a decrease in specific surface area which was resulted from pore blocking by metal.

Toluene Desorption of Modified Activated Carbon for Microwave Irradiation (마이크로파조사를 위한 개질화 활성탄의 톨루엔 탈착)

  • Choi, Sung-Woo;Chu, Heon-Jik
    • Journal of Environmental Science International
    • /
    • v.20 no.2
    • /
    • pp.223-229
    • /
    • 2011
  • Toluene desorption of modified activated carbon for microwave irradiation was evaluated. As a virgin GAC reacted from microwave energy, it created an "arcing" between GAC particles in desorption process. The arcing became more and more vigorous and achieved a red flame of GAC. The silica coated GAC(Si/GAC) was developed to prevent arcing phenomenon and temperature control problem. The result shows virgin GAC with 5wt%, 10wt% and 20wt% silica had no arcing and could control temperature very well. However, the adsorption rate of Si/GAC was decreased by coated silica amount due to decreasing surface area of GAC. The 5wt% Si/GAC adsorption rate was quite similar to virgin GAC adsorption rate. After adsorption, the toluene-loaded GAC and Si/GAC was reactivated by 2450MHz MW irradiation with 300W for 5 min. Quantitative desorption of the toluene was achieved at MW irradiation at 300W with desorption efficiencies as high as 98.59% to 84.65%% after four cycles.

Enhancement of phosphate removal using copper impregnated activated carbon(GAC-Cu) (Cu(II)를 이용하여 표면개질된 활성탄의 인산염 제거효율 향상)

  • Shin, Jeongwoo;Kang, Seoyeon;An, Byungryul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.455-463
    • /
    • 2021
  • The adsorption process using GAC is one of the most secured methods to remove of phosphate from solution. This study was conducted by impregnating Cu(II) to GAC(GAC-Cu) to enhance phosphate adsorption for GAC. In the preparation of GAC-Cu, increasing the concentration of Cu(II) increased the phosphate uptake, confirming the effect of Cu(II) on phosphate uptake. A pH experiment was conducted at pH 4-8 to investigate the effect of the solution pH. Decrease of phosphate removal efficiency was found with increase of pH for both adsorbents, but the reduction rate of GAC-Cu slowed, indicating electrostatic interaction and coordinating bonding were simultaneously involved in phosphate removal. The adsorption was analyzed by Langmuir and Freundlich isotherm to determine the maximum phosphate uptake(qm) and adsorption mechanism. According to correlation of determination(R2), Freundlich isotherm model showed a better fit than Langmuir isotherm model. Based on the negative values of qm, Langmuir adsorption constant(b), and the value of 1/n, phosphate adsorption was shown to be unfavorable and favorable for GAC and GAC-Cu, respectively. The attempt of the linearization of each isotherm obtained very poor R2. Batch kinetic tests verified that ~30% and ~90 phosphate adsorptions were completed within 1h and 24 h, respectively. Pseudo second order(PSO) model showed more suitable than pseudo first order(PFO) because of higher R2. Regardless of type of kinetic model, GAC-Cu obtained higher constant of reaction(K) than GAC.

The preparation of surface-modified granular activated carbon (GAC) to enhance Perfluorooctanoic acid (PFOA) removal and evaluation of adsorption behavior (입상 활성탄 표면 개질을 통한 과불화옥탄산 (PFOA) 제거 향상 및 특성 평가)

  • Jeongwoo Shin;Byungryul An
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.4
    • /
    • pp.177-186
    • /
    • 2023
  • Perfluorooctanoic acid(PFOA) was one of widely used per- and poly substances(PFAS) in the industrial field and its concentration in the surface and groundwater was found with relatively high concentration compared to other PFAS. Since various processes have been introduced to remove the PFOA, adsorption using GAC is well known as a useful and effective process in water and wastewater treatment. Surface modification for GAC was carried out using Cu and Fe to enhance the adsorption capacity and four different adsorbents, such as GAC-Cu, GAC-Fe, GAC-Cu(OH)2, GAC-Fe(OH)3 were prepared and compared with GAC. According to SEM-EDS, the increase of Cu or Fe was confirmed after surface modification and higher weight was observed for Cu and Fe hydroxide(GAC-Cu(OH)2 and GAC-Fe(OH)3, respectively). BET analysis showed that the surface modification reduced specific surface area and total pore volumes. The highest removal efficiency(71.4%) was obtained in GAC-Cu which is improved by 17.9% whereas the use of Fe showed lower removal efficiency compared to GAC. PFOA removal was decreased with increase of solution pH indicating electrostatic interaction governs at low pH and its effect was decreased when the point of zero charges(pzc) was negatively increased with an increase of pH. The enhanced removal of PFOA was clearly observed in solution pH 7, confirming the Cu in the surface of GAC plays a role on the PFOA adsorption. The maximum uptake was calculated as 257 and 345 ㎍/g for GAC and GAC-Cu using Langmuir isotherm. 40% and 80% of removal were accomplished within 1 h and 48 h. According to R2, only the linear pseudo-second-order(pso) kinetic model showed 0.98 whereas the others obtained less than 0.870.

Enhancement of Efficiency of Activated Carbon Impregnated Chitosan for Carbon Dioxide Adsorption

  • Patkool, Chaiwat;Chawakitchareon, Petchporn;Anuwattana, Rewadee
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.289-292
    • /
    • 2014
  • The effect of carbon dioxide ($CO_2$) on global warming is serious problem. The adsorption with solid sorbents is one of the most appropriate options. In this study, the most interesting adsorbent is granular activated carbon (GAC). It is suitable material for $CO_2$ adsorption because of its simple availability, many specific surface area, and low-cost material. Afterwards, GAC was impregnated with chitosan solution as impregnated granular activated carbon (CGAC) in order to improve the adsorption capacity of GAC. This research aims to compare the physical and chemical characteristics of GAC and CGAC. The experiment was carried out to evaluate the efficiency of $CO_2$ adsorption between GAC and CGAC. The results indicated that the iodine number of GAC and CGAC was 137.17 and 120.30 mg/g, respectively. The Brunauer-Emmett-Teller results (BET) of both GAC and CGAC show that specific surface area was 301.9 and $531.3m^2/g$, respectively; total pore volume was 0.16 and $0.29cm^3/g$, respectively; and mean diameter of pore was 2.18 and 2.15 nm, respectively. Finally, the $CO_2$ adsorption results of both GAC and CGAC in single column how the maximum adsorption capacity was 0.17 and 0.25 mol/kg, respectively; how degeneration time was 49.6 and 80.0 min, respectively; and how the highest efficiency of $CO_2$ adsorption was 91.92% and 91.19%, respectively.

Adsorption of selected endocrine disrupting compounds (EDCs)/pharmaceutical active compounds (PhACs) onto granular activated carbon (GAC) : effect of single and multiple solutes (EDCs/PhACs의 단일,복합 조건에서의 GAC에 대한 흡착 연구)

  • Jung, Chanil;Son, Jooyoung;Yoon, Yeomin;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.2
    • /
    • pp.235-248
    • /
    • 2014
  • The widespread occurrence of dissolved endocrine disrupting compounds(EDCs) and pharmaceutical active compounds(PhACs) in water sources is of concern due to their adverse effects. To remove these chemicals, adsorption of EDCs/PhACs on granular activated carbon(GAC) was investigated, and bisphenol A, carbamazepine, diclofenac, ibuprofen, and sulfamethoxazole were selected as commonly occurring EDCs/PhACs in the aquatic environment. Various adsorption isotherms were applied to evaluate compatability with each adsorption in the condition of single-solute. Removal difference between individual and competitive adsorption were investigated from the physicochemical properties of each adsorbate. Hydrophobicity interaction was the main adsorption mechanism in the single-solute adsorption with order of maximum adsorption capacity as bisphenol A > carbamazepine > sulfamethoxazole > diclofenac > ibuprofen, while both hydrophobicity and molecular size play significant roles in competitive adsorption. Adsorption kinetic was also controled by hydrophobicity of each adsorbate resulting in higher hydrophobicity allowed faster adsorption on available adsorption site on GAC. EDCs/PhACs adsorption on GAC was determined as an endothermic reaction resulting in better adsorption at higher temperature ($40^{\circ}C$) than lower temperature ($10^{\circ}C$).

Adsorption of heavy metal ions onto a surface treated with granular activated carbon and activated carbon fibers (표면 처리에 따른 입상활성탄 및 활성탄소섬유의 중금속 흡착)

  • Kang, Kwang Cheol;Kwon, Soo Han;Kim, Seung Soo;Choi, Jong Won;Chun, Kwan Sik
    • Analytical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.285-289
    • /
    • 2006
  • In this study, the effect of an acidic treatment on granular activated carbon (GAC) and activated carbon fibers (ACF) was investigated for a $Pb^{2+}$ and $Ni^{2+}$ ion adsorption. 1.0 M nitric acid solution was used as the acid solution for the surface treatment. Surface properties of the GAC and ACF were characterized by the pH, elemental analysis and pHpzc (pH of the point of zero charge). Their specific surface area and the pore structure were also evaluated by the nitrogen adsorption data at 77K. As a result, the acidic treatment led to an increase of the oxygen-containing functional groups. Furthermore, the adsorption capacity of the acid-treated GAC and ACF was improved in the order of acidic-ACF > untreated-ACF > acidic-GAC > untreated-GAC, though the decrease in specific surface area induced by a pore blocking of the functional groups was observed.

Degradation of Humic Acid in Ozone/GAC Process (오존/GAC 공정에서의 부식산 분해 특성)

  • Rhee, Dong Seok
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.47-52
    • /
    • 2008
  • In this study, GAC adsorption, ozonation and $O_3/GAC$ hybrid processes were investigated for treatment of humic acid. The degradation characteristics and efficiencies of humic acid in each process were evaluated through pH variation, $UV_{254}$ decrease, DOC removal, change of molecular size distribution and by-products formation. DOC removal rate in $O_3/GAC$ hybrid process (80%) was higher than arithmetic sum of ozonation (38%) and GAC adsorption process (19%) by synergism. $UV_{254}$ decrease rate of humic acid was also the highest than any other processes when treated in $O_3/GAC$ hybrid process. Molecular size distribution was not significantly changed in the GAC adsorption process. Main distribution of molecular size of humic acid was converted from 3 k~30 kDa into 0.5 k~3 kDa in ozonation. But the most of large molecular sizes of humic acid converted into small molecules(smaller than 0.5 kDa) in $O_3/GAC$ hybrid process. Quantities of formaldehyde and glyoxal formed in $O_3/GAC$ hybrid process were less than the ones in ozonation.

  • PDF