• Title/Summary/Keyword: GABA$_A$ receptor

Search Result 129, Processing Time 0.023 seconds

Tranquilizer-like Effects of Sanjoinine A: Possible GABA/Benzodiazepine Receptors Complex Involvement

  • Ma, Yu-An;Eun, Jae-Soon;Oh, Ki-Wan
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2008.04a
    • /
    • pp.119-142
    • /
    • 2008
  • Zizyphi Spinosi Semen (ZSS) has been widely used for the treatment of anxiety and insomnia in Korea and China. This experiment was performed to know whether sanjoinine A, one of major alkaloid compounds of ZSS has anxiolytic and hypnotic effects through the GABAergic systems. Our results showed that administration of sanjoinine A increased open arm entries and spent time in open arm in the elevated plus-maze and increased head dips in hole board test. Different from traditional anxiolytic, diazepam, sanjoinine A itself did not decrease locomotor activity and strength level in mice. Furthermore, Sanjoinine A (0.5-2.0 mg/kg) prolonged sleeping time and reduced sleeping latency induced by pentobarbital in a dose-dependent manner similar to muscimol, a $GABA_A$ receptor agonist. Sanjoinine A (0.25-1.0 mg/kg) also increased sleeping rate and sleeping time in the combined administration at the sub-hypnotic dose of pentobarbital and showed synergic effects with muscimol in potentiating sleeping onset and enhancing sleeping time induced by pentobarbital. However, sanjoinine A itself did not induce sleeping at the higher dose. In addition, both of sanjoinine A and pentobarbital increased chloride influx in primary cultured cerebellar granule cells. Sanjoinine A decreased the $GABA_A$ receptor ${\alpha}$-subunit expression and increased ${\gamma}$-subunit expression, and had no effects on abundance of ${\beta}$-subunit in primary cultured cerebellar granule cells, showing different expression of subunits from pentobarbital. In conclusion, sanjoinine A shows anxiolytic-like effects and augments pentabarbital-induced sleeping behaviors through the modification of GABAergic systems. [This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (The Regional Research Universities Program/Center for Healthcare Technology Development)].

  • PDF

Modulation in NMDA and $GABA_A$ Receptor Expression after Cerebroventricular Infusion of Ginsenosides

  • Oh Seikwan;Kim Hack-Seang
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.96-112
    • /
    • 2002
  • In the present study, we have investigated the effects of centrally administered ginsenoside Rc or Rgl on the modulation of NMDA receptor and $GABA_A$ receptor binding in rat brain. The NMDA receptor binding was analyzed by quantitative autoradiography using $[^3H]MK-801$ binding, and $GABA_A$ receptor bindings were analyzed by using $[^3H]muscimol\;and\;[^3H]flunitrazepam$ in rat brain slices. Rats were infused with ginsenoside Rc or Rg1 ($10\;{\mu}g/10{\mu}l/hr$, i.c.v.) for 7 days, through pre-implanted cannula by osmotic minipumps (Alzet, model 2ML), The levels of $[^3H]MK-801$ binding were highly decreased in part of cortex and cingulated by ginsenoside Rc and Rgl. The levels of $[^3H]muscimol$ binding were strongly elevated in almost all regions of frontal cortex by the treatment of ginseoside Rc but decreased by ginsenoside Rg 1. However, the $[^3H]flunitrazepam$ binding was not modulated by ginsenoside Rc or ginsenoside Rgl infusion. These results suggest that prolonged infusion of ginsenoside could differentially modulate $[^3H]MK-801\;and\;[^3H]muscimol$ binding in a region-specific manner. Also, we investigated the influence of centrally administered ginsenoside on the regulation of mRNA levels of the family of NMDA receptor subtypes (NR1, NR2A, NR2B, NR2C) by in situ hybridization histochemistry in the rat brain. The level of NR1 mRNA is significantly increased in temporal cortex, caudate putamen, hippocampus, and granule layer of cerebellum in Rgl-infused rats as compared to control group. The level of NR2A mRNA is elevated in the frontal cortex. In contrast, it was decreased in CAI area of hippocampus in Rgl-infused rats. However, there was no significant change of NR1 and NR2A mRNA levels in Rc-infused rats. The level of NR2B mRNA is elevated in cortex, caudate putamen, and thalamus in both Rc- and Rg-infused rats. In contrast, NR2B level is decreased in CA3 in Rgl-infused rats. The level of NR2C mRNA is increased in the granule layer of cerebellum in only Rg1 but not Rc infused rats. These results show that structure difference of ginsenoside may diversely affect the modulation of expression of NMDA receptor subunit mRNA after infusion into cerebroventricle in rats.

  • PDF

Effects of Central GABA and Glutamate on Blood Pressure and Single Unit Spikes in the RVLM of Rats

  • Park, Jae-Sik;Lee, Zee-Ihn;Jang, Jae-Hee;Ahn, Dong-Kuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.3
    • /
    • pp.149-154
    • /
    • 2002
  • The blood pressure (BP) is regulated by the nervous system and humoral factors, such as renin- angiotensin system, vasopressin and others. In the present study, we examined the central effects of glutamate and GABA on the cardiovascular regulation by injection of these substances into the lateral ventricle and also investigated the relationship between these central effects and the action of angiotensin II (Ang). Male Sprague Dawley rats, $350{\sim}400$ g, were anesthetized with urethane and instrumented with an arterial catheter for direct measurement of BP and heart rate (HR), and an guide cannula in the lateral ventricle for drug injection. A glass microelectode was inserted into the rostral ventrolateral medulla (RVLM) for recording single unit spikes. Barosensitive neurons were identified by changes of single unit spikes in RVLM following intravenous injection of nitroprusside and phenylephrine. The effects of GABA and glutamate injected into the lateral ventricle were studied in single neuronal activity of the RVLM in addition to changes in BP and heart rate, and compared the results before and after treatment with intravenous losartan, nonpeptide Ang II-type 1 receptor antagonist (1 mg/100 g BW). Intracerebroventricular administration of GABA decreased systolic blood pressure (SBP) and HR, but increased the firing rates in the RVLM. However, intracerebroventricular glutamate injection produced effects opposite to GABA. After pretreatment of intravenous losartan, the central effects of GABA on BP and firing rate in the RVLM were significantly attenuated and that of glutamate showed a tendency of attenuation. These results suggested that central GABA and glutamate regulated BP and firing rates in RVLM were inversely related to BP change. The central effects of GABA or glutamate on the autonomic nervous function were modulated by humoral factor, Ang II, by maintaining BP.

The Development of Phasic and Tonic Inhibition in the Rat Visual Cortex

  • Jang, Hyun-Jong;Cho, Kwang-Hyun;Park, Sung-Won;Kim, Myung-Jun;Yoon, Shin-Hee;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.399-405
    • /
    • 2010
  • Gamma-aminobutyric acid (GABA)-ergic inhibition is important in the function of the visual cortex. In a previous study, we reported a developmental increase in $GABA_A$ receptor-mediated inhibition in the rat visual cortex from 3 to 5 weeks of age. Because this developmental increase is crucial to the regulation of the induction of long-term synaptic plasticity, in the present study we investigated in detail the postnatal development of phasic and tonic inhibition. The amplitude of phasic inhibition evoked by electrical stimulation increased during development from 3 to 8 weeks of age, and the peak time and decay kinetics of inhibitory postsynaptic potential (IPSP) and current (IPSC) slowed progressively. Since the membrane time constant decreased during this period, passive membrane properties might not be involved in the kinetic changes of IPSP and IPSC. Tonic inhibition, another mode of $GABA_A$ receptor-mediated inhibition, also increased developmentally and reached a plateau at 5 weeks of age. These results indicate that the time course of the postnatal development of GABAergic inhibition matched well that of the functional maturation of the visual cortex. Thus, the present study provides significant insight into the roles of inhibitory development in the functional maturation of the visual cortical circuits.

Ginsenoside Rb1 exerts neuroprotective effects through regulation of Lactobacillus helveticus abundance and GABAA receptor expression

  • Chen, Huimin;Shen, Jiajia;Li, Haofeng;Zheng, Xiao;Kang, Dian;Xu, Yangfan;Chen, Chong;Guo, Huimin;Xie, Lin;Wang, Guangji;Liang, Yan
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.86-95
    • /
    • 2020
  • Background: Ginsenoside Rb1 (Rb1), one of the most abundant protopanaxadiol-type ginsenosides, exerts excellent neuroprotective effects even though it has low intracephalic exposure. Purpose: The present study aimed to elucidate the apparent contradiction between the pharmacokinetics and pharmacodynamics of Rb1 by studying the mechanisms underlying neuroprotective effects of Rb1 based on regulation of microflora. Methods: A pseudo germ-free (PGF) rat model was established, and neuroprotective effects of Rb1 were compared between conventional and PGF rats. The relative abundances of common probiotics were quantified to reveal the authentic probiotics that dominate in the neuroprotection of Rb1. The expressions of the gamma-aminobutyric acid (GABA) receptors, including GABAA receptors (α2, β2, and γ2) and GABAB receptors (1b and 2), in the normal, ischemia/reperfusion (I/R), and I/R+Rb1 rat hippocampus and striatum were assessed to reveal the neuroprotective mechanism of Rb1. Results: The results showed that microbiota plays a key role in neuroprotection of Rb1. The relative abundance of Lactobacillus helveticus (Lac.H) increased 15.26 fold after pretreatment with Rb1. I/R surgery induced effects on infarct size, neurological deficit score, and proinflammatory cytokines (IL-1β, IL-6, and TNF-α) were prevented by colonizing the rat gastrointestinal tract with Lac.H (1 × 109 CFU) by gavage 15 d before I/R surgery. Both Rb1 and Lac.H upregulated expression of GABA receptors in I/R rats. Coadministration of a GABAA receptor antagonist significantly attenuated neuroprotective effects of Rb1 and Lac.H. Conclusion: In sum, Rb1 exerts neuroprotective effects by regulating Lac.H and GABA receptors rather than through direct distribution to the target sites.

Analysis of Gliotransmitters in ADHD Mice (ADHD (주의력결핍 과잉행동장애) 생쥐 모델에서의 별아교세포 유래 신경전달물질 분석)

  • Kim, Ga-Yeon;Park, Jaewon;Yoon, Bo-Eun
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.597-604
    • /
    • 2018
  • Although the core mechanisms of Attention Deficit/Hyperactivity Disorder (ADHD) are unknown, several ADHD-associated proteins have been studied. G-protein - coupled receptor kinase interacting protein-1 (GIT1) is a multifunctional adapter protein that affects neuron growth and dendrite formation. GIT1-deficient mice have shown ADHD-like behavior and also recovered through amphetamine treatment. In this study, gliotransmitters were investigated in both intracellular and extracellular space from GIT1-deficient mice. To measure the amount of gliotransmitters, primary astrocyte cultures were taken from the cerebral and cerebellar cortices of wild (WT), hetero (HE), and knock-out (KO) mice. Major gliotransmitters were analyzed using high-performance liquid chromatography. It was observed that the amount of excitatory and inhibitory gliotransmitters were dependent on genotype and showed a change in excitation/inhibition ratios. Interestingly, the major excitatory gliotransmitter, glutamate, existed at the lowest level in WT mice, but the amount of inhibitory gliotransmitters, gamma-aminobutyric acid (GABA) and glycine, varied depending on brain region. Remarkably, an increased amount of GABA was measured at the intracellular cerebrum in WT mice compared with KO mice. It was presumed that KO mice would secrete more inhibitory gliotransmitters to compensate for GIT1 depletion or else acquire a defect to reuptake-secreted GABA. This may be a possible mechanism for ADHD pathology.

Anxiolytic effect of Korean Red Ginseng through upregulation of serotonin and GABA transmission and BDNF expression in immobilized mice

  • Bui, Bich Phuong;Nguyen, Phuong Linh;Do, Ha Thi Thu;Cho, Jungsook
    • Journal of Ginseng Research
    • /
    • v.46 no.6
    • /
    • pp.819-829
    • /
    • 2022
  • Background: Anxiolytic properties of Korean Red Ginseng (KRG) have been previously reported. However, the exact mechanism(s) of action remains to be elucidated. The present study investigated the effect of KRG on immobilization-induced anxiety-like behaviors in mice and explored the involvement of the serotonin and GABA systems and BDNF in the anxiolytic action. Methods: Mice were orally administered with KRG (200 mg/kg/day) for 4 weeks and immobilized once daily for 2 h. p-Chlorophenylalanine (p-CPA) was intraperitoneally injected on day 22-28, and flumazenil or bicuculline was injected on day 25-28. After behavioral evaluations, brains were dissected for biochemical analyses. Results: KRG improved immobilization-induced anxiety-like behaviors in mice, as assessed by the elevated plus maze (EPM) and marble burying tests (MBT). The anxiolytic effect of KRG was comparable to that of fluoxetine, a reference drug clinically used for anxiety disorders. A serotonin synthesis inhibitor, p-CPA, blocked the effect of KRG in the EPM and MBT, indicating the requirement of serotonin synthesis for anxiolytic action. In addition, the anxiolytic effect of KRG was inhibited by bicuculline (a GABAA antagonist) in MBT, implying the involvement of GABA transmission. Western blotting analyses revealed that KRG upregulated the expression of tryptophan hydroxylase and GABAA receptor in the brain, which was blocked by p-CPA. Enhanced BDNF expression by KRG in the hippocampus was also indicated to mediate the anxiolytic action of KRG in immobilized mice. Conclusion: KRG exhibited the anxiolytic effect in immobilized mice by multiple mechanisms of action, involving enhanced serotonin and GABA transmissions and BDNF expression.

Evodiamine Reduces Caffeine-Induced Sleep Disturbances and Excitation in Mice

  • Ko, Yong-Hyun;Shim, Kyu-Yeon;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.432-438
    • /
    • 2018
  • Worldwide, caffeine is among the most commonly used stimulatory substances. Unfortunately, significant caffeine consumption is associated with several adverse effects, ranging from sleep disturbances (including insomnia) to cardiovascular problems. This study investigates whether treatment with the Evodia rutaecarpa aqueous extract (ERAE) from berries and its major molecular component, evodiamine, can reduce the adverse caffeine-induced sleep-related and excitation effects. We combined measurements from the pentobarbital-induced sleep test, the open field test, and the locomotor activity test in mice that had been dosed with caffeine. We found that ERAE and evodiamine administration reduced the degree of caffeine-induced sleep disruption during the sleep test. Additionally, we found that evodiamine significantly inhibits caffeine-induced excitation during the open field test, as well as decreasing hyperlocomotion in the locomotor activity test. Additional in vitro experiments showed that caffeine administration decreased the expression of ${\gamma}$-aminobutyric acid $(GABA)_A$ receptor subunits in the mouse hypothalamus. However, evodiamine treatment significantly reversed this expression reduction. Taken together, our results demonstrate that ERAE and its major compound, evodiamine, provide an excellent candidate for the treatment or prevention of caffeine-induced sleep disturbances and excitatory states, and that the mechanism of these beneficial effects acts, at least in part, through the $GABA_A$-ergic system.

Sinomenine, an Alkaloid Derived from Sinomenium acutum Potentiates Pentobarbital-Induced Sleep Behaviors and Non-Rapid Eye Movement (NREM) Sleep in Rodents

  • Yoo, Jae Hyeon;Ha, Tae-Woo;Hong, Jin Tae;Oh, Ki-Wan
    • Biomolecules & Therapeutics
    • /
    • v.25 no.6
    • /
    • pp.586-592
    • /
    • 2017
  • Sinomenium acutum has been long used in the preparations of traditional medicine in Japan, China and Korea for the treatment of various disorders including rheumatism, fever, pulmonary diseases and mood disorders. Recently, it was reported that Sinomenium acutum, has sedative and anxiolytic effects mediated by GABA-ergic systems. These experiments were performed to investigate whether sinomenine (SIN), an alkaloid derived from Sinomenium acutum enhances pentobarbital-induced sleep via ${\gamma}$-aminobutyric acid (GABA)-ergic systems, and modulates sleep architecture in mice. Oral administration of SIN (40 mg/kg) markedly reduced spontaneous locomotor activity, similar to diazepam (a benzodiazepine agonist) in mice. SIN shortened sleep latency, and increased total sleep time in a dose-dependent manner when co-administrated with pentobarbital (42 mg/kg, i.p.). SIN also increased the number of sleeping mice and total sleep time by concomitant administration with the sub-hypnotic dosage of pentobarbital (28 mg/kg, i.p.). SIN reduced the number of sleep-wake cycles, and increased total sleep time and non-rapid eye movement (NREM) sleep. In addition, SIN also increased chloride influx in the primary cultured hypothalamic neuronal cells. Furthermore, protein overexpression of glutamic acid decarboxylase ($GAD_{65/67}$) and $GABA_A$ receptor subunits by western blot were found, being activated by SIN. In conclusion, SIN augments pentobarbital-induced sleeping behaviors through $GABA_A$-ergic systems, and increased NREM sleep. It could be a candidate for the treatment of insomnia.

Assessment of antinociceptive property of Cynara scolymus L. and possible mechanism of action in the formalin and writhing models of nociception in mice

  • Pegah Yaghooti;Samad Alimoahmmadi
    • The Korean Journal of Pain
    • /
    • v.37 no.3
    • /
    • pp.218-232
    • /
    • 2024
  • Background: Cynara scolymus has bioactive constituents and has been used for therapeutic actions. The present study was undertaken to investigate the mechanisms underlying pain-relieving effects of the hydroethanolic extract of C. scolymus (HECS). Methods: The antinociceptive activity of HECS was assessed through formalin and acetic acid-induced writhing tests at doses of 50, 100 and 200 mg/kg intraperitoneally. Additionally, naloxone (non-selective opioid receptors antagonist, 2 mg/kg), atropine (non-selective muscarinic receptors antagonist, 1 mg/kg), chlorpheniramine (histamine H1-receptor antagonist, 20 mg/kg), cimetidine (histamine H2-receptor antagonist, 12.5 mg/kg), flumazenil (GABAA/BDZ receptor antagonist, 5 mg/kg) and cyproheptadine (serotonin receptor antagonist, 4 mg/kg) were used to determine the systems implicated in HECS-induced analgesia. Impact of HECS on locomotor activity was executed by open-field test. Determination of total phenolic content (TPC) and total flavonoid content (TFC) was done. Evaluation of antioxidant activity was conducted employing 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay. Results: HECS (50, 100 and 200 mg/kg) significantly indicated dose dependent antinociceptive activity against pain-related behavior induced by formalin and acetic acid (P < 0.001). Pretreatment with naloxone, atropine and flumazenil significantly reversed HECS-induced analgesia. Antinociceptive effect of HECS remained unaffected by chlorpheniramine, cimetidine and cyproheptadine. Locomotor activity was not affected by HECS. TPC and TFC of HECS were 59.49 ± 5.57 mgGAE/g dry extract and 93.39 ± 17.16 mgRE/g dry extract, respectively. DPPH free radical scavenging activity (IC50) of HECS was 161.32 ± 0.03 ㎍/mL. Conclusions: HECS possesses antinociceptive activity which is mediated via opioidergic, cholinergic and GABAergic pathways.