• Title/Summary/Keyword: GA-PID controller

Search Result 44, Processing Time 0.027 seconds

Attitude Control of Helicopter Simulator System using A Hybrid GA-PID WAVENET Controller (Hybrid GA-PID WAVENET 제어기를 이용한 모형 헬리콥터 시스템의 자세 제어)

  • 박두환;지석준;이준탁
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.433-439
    • /
    • 2004
  • The Helicopter Simulator System is non-linear and complex. Futhermore, because of absence of its accurate mathematical model, it is difficult to control accurately its attitudes such as elevation angle and azimuth one. Therefore, we proposed a Hybrid GA-PID WAVENET(Genetic Algorithm Proportional Integral Derivative Wavelet Neural Network)control technique to control efficiently these angles. The proposed Hybrid GA-PID WAVENET is made through the following process. First, the WAVENET fundamental functions are defined. And their dilation and translation values are adjusted by GA to construct the optimal WAVENET controller. Secondly, the proportional, integral, and derivative gain coefficients of PR controller are tuned optimally. Finally, WAVENET controller which has a good transient characteristic and GA-PE controller which has a good steady state characteristic is adequately combined in hybrid type. Through the computer simulations, it is proved that the Hybrid GA-PE WAVENET control technique has a more excellent dynamic response than PID control technique and GA-PID one.

Attitude Control of Helicopter Simulator System Using GA-PID Controller (GA-PID 제어기를 이용한 헬리콥터 시스템의 자세 제어)

  • 성상규;이준탁;박두환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.675-684
    • /
    • 2004
  • The Helicopter system has a non-linearity and complexity. Futhermore, because of absence of its correct mathematical model. it is difficult to control accurately its attitudes for elevation angle and azimuth one. Therefore, we proposed a GA-PID control technique to control these angles efficiently. The proposed GA-PID controller can systematically generate optimal PID parameters by applying GA theory to a helicopter attitude control system. Through the computer simulation, the GA-PID technique shows better attitude control characteristic than traditional PID control technique.

Experimental Study of GA and Heuristic Control Rule based PID Controller for 2-Dimensional Inverted Pendulum (2차원 도립진자를 위한 GA 및 Heuristic한 제어규칙 기반 PID제어기의 실험적 연구)

  • 서강면;강문성
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.8
    • /
    • pp.623-631
    • /
    • 2003
  • We have fabricated the two-dimensional inverted pendulum system and designed its controller. The two-dimensional inverted pendulum system, which is composed of X-Y table, is actuated through timing belt by each of two geared DC motors. And the control goal is that the rod is always kept to a vertical position to any distrubance and is quickly moved to the desired position. Because this system has generally nonlinear dynamic characteristics and X-axis and Y-axis move together, it is very difficult to find its exact mathematical model and to design its controller. Therefore, we have designed the PID controller with simple structure and excellent performance. Genetic algorithm(GA), which is blown as one of probabilistic searching methods, and human's heuristic control strategy are introduced to design an optimal PID controller. The usefulness of the proposed GA based PID coefficient searching technique is verified through the experiments and computer simulations.

Magnetic Levitation Control Using The Parallel Fuzzy Controller (병렬 퍼지-PID 제어기를 이용한 자기부상 제어)

  • Kim, Myoung-Gun;Kim, Jong-Moon;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.352-354
    • /
    • 2004
  • In this paper, a parallel fuzzy controller for one degree of freedom magnetic levitation is designed and its performance is compared with the performance of a PID controller. Input, output scaling factor of fuzzy controller and gain of PID controller were tuned using the GA algorithm. The designed controllers are validated by numerical simulations. So it's shown that parallel fuzzy controller can give the better performance for the plant than PID controller.

  • PDF

Motion Control of Inchworm using Input Shaping and Genetic Algorithm (입력 성형과 유전 알고리즘에 의한 자벌레 운동제어)

  • Kim, In-Soo;Kim, Ki-Bum;Park, Seung-Min
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.3
    • /
    • pp.313-319
    • /
    • 2017
  • This study presents a genetic algorithm (GA) to design a PID controller systematically for an inchworm operated by piezoelectric actuators. The performance index considering overshoot and settling time is adopted to search an optimal PID gain using GA. The piezoelectric actuator shows nonlinear characteristics including hysteresis and residual displacement. The PID feedback system combined with an integrator is used to improve the ability of tracking the complex input signals and suppressing the steady state error. The PID controller tuned by GA can track the various motion contours effectively. However, the PID controller shows an improper residual vibration under the application of high-frequency square input. The input shaper combined with the feedback system can overcome this limitation of the PID controller.

Design of Fuzzy Precompensated PID Controller for Load Frequency Control of Power System using Genetic Algorithm (유전 알고리즘을 이용한 전력계통의 부하주파수 제어를 위한 퍼지 전 보상 PID 제어기 설계)

  • Jeong, Hyeong-Hwan;Wang, Yong-Pil;Lee, Jeong-Pil;Jeong, Mun-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.2
    • /
    • pp.62-69
    • /
    • 2000
  • In this paper, we design a GA-fuzzy precompensated PID controller for the load frequency control of two-area interconnected power system. Here, a fuzzy precompensated PID controller is designed as a fuzzy logic-based precompensation approach for PID controller. This scheme is easily implemented simply by adding a fuzzy precompensator to an existing PID controller. And we optimize the fuzzy precompensator with a genetic algorithm for complements the demerit such as the difficulty of the component selection of fuzzy controller, namely, scaling factor, membership function and control rules. Simulation results show that the proposed control technique is superior to a conventional PID control and a fuzzy precompensated PID control in dynamic responses about the load disturbances of power system and is convinced robustness reliableness in view of structure.

  • PDF

Hybrid Intelligent System Using PSO/Bacterial Foraging and PID Controller Tuning

  • Kim Dong-Hwa
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.22-34
    • /
    • 2006
  • o GA-BF approach for improvement of learning and optimization in GA o GA-BF has better response on various test functions o Satisfactory PID controller tuning in AVR, motor vector control systems o Potentially useful in many practically important engineering optimization problems

  • PDF

Design of a GA-Based Fuzzy PID Controller for Optical Disk Drive (유전알고리즘을 이용한 Optical Disk Drive의 퍼지 PID 제어기 설계)

  • 유종화;주영훈;박진배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.598-603
    • /
    • 2004
  • An optical head actuator of an optical disk drive consists of two servo mechanisms for the focusing and the tracking to acquire data from disk. As the rotational speed of the disk grows, the utilized lag-lead-lead compensator has known to be above its ability for precisely controlling the optical head actuator. To overcome the difficulty, this paper propose a new controller design method for optical head actuator based fuzzy proportional-integral-derivative (PID) control and the genetic algorithm(GA). It employs a two-stage control structure with a fuzzy PI and a fuzzy PD control and is optimized by the GA to yield the suboptimal fuzzy PID control performance. It is shown the feasibility of the proposed method through a numerical tracking actuator simulation.

GA-Based Fuzzy Control of Pseudo-2 Axes Robot Module (Pseudo-2축 로봇 모듈의 유전 알고리즘에 근거한 퍼지 제어)

  • 신승호;유영선;강희준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.35-42
    • /
    • 1998
  • This paper presents the introduction of Pseudo-2 axes robot module and its GA-based fuzzy control implementation. Pseudo-2 axes robot module which use a single motor and controller for driving 2 joints of a robot mechanism, is devised towards a lower priced robot with its degree of freedom maintained GA-based Fuzzy controller is considered for the better control implementation of the developed system than the conventional PID controller. Here. the scaling factors of the membership function with high fitness values are selected using a genetic algorithm for a pulse-type input trajectory. The obtained controller also shows better trajectory tracking performance than a PID controller.

  • PDF

PID Control for Nonlinear Multivariable System using GA (GA를 이용한 비선형 다변수시스템의 PID제어)

  • Seo, Kang-Myun;An, Joung-Hoon;Kang, Moon-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2146-2148
    • /
    • 2002
  • In this paper, PID control method using genetic algorithm to control the nonlinear multivariable system is presented. Genetic algorithms are global search techniques for nonlinear optimization. For experiment, the x-y rod balancing system with driver circuit board is fabricated. Experiments such as angle and position control for system are performed. The validity and control performance of the GA-based PID controller are confirmed by experimental results.

  • PDF