• Title/Summary/Keyword: GA with a constraint

Search Result 36, Processing Time 0.022 seconds

Optimal Reliability Strategy for k-out-of-n System Considering Redundancy and Maintenance (중복설계 및 예방정비를 고려한 수리가능 k-out-of-n 시스템 신뢰도 최적화 전략)

  • Lee, Youn-Ho;Jung, Kwang-Kyun;Yoon, Tae-Dong;Kwon, Ki-Sang
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.1
    • /
    • pp.118-127
    • /
    • 2014
  • The configuration such as series, parallel and k-out-of-n of a repairable system directly affects its reliability. The maintenance strategy can also affect the overall performance of the system. The objective of this work is to investigate the possible trade-off between the configuration of a repairable k-out-of-n system and its maintenance strategy. The redundancy is considered to be the design decision variables, whereas the preventive maintenance period is considered to be the maintenance decision variables. The optimization model is used to minimize the overall life cycle cost associated with the system, considering constraint on reliability. Finally, genetic algorithm is used to find the optimal values for the decision variables. The result is compared with optimal values for considering redundancy and maintenance respectively.

Optimisation of an inductive power transfer structure

  • Besuchet, Romain;Auvigne, Christophe;Shi, Dan;Winter, Christophe;Civet, Yoan;Perriard, Yves
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.349-355
    • /
    • 2013
  • This paper presents the multi-objective optimisation of an Inductive Coupled Power Transfer (ICPT) device. A setup as complicated as the one at hand in this paper is extremely hard to model analytically. To acquire some knowledge about the influence of the geometric factors, a sensitivity analysis is first performed using design of experiment (DoE) and finite-element modelling (FEM). It allows validating that the choice of the free factors is relevant. This being done, the optimisation itself is performed using a genetic algorithm (GA), with two objectives and a strict functioning constraint.

Heuristic Model for Vehicle Routing Problem with Time Constrained Based on Genetic Algorithm (유전자알고리즘에 의한 시간제한을 가지는 차량경로모델)

  • Lee, Sang-Cheol;Yu, Jeong-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.221-227
    • /
    • 2008
  • A vehicle routing problem with time constraint is one of the important problems in distribution and transportation. The service of a customer must start and finish within a given time interval. Our method is based on an improved operators of genetic algorithm and the objective is to minimize the cost of servicing the set of customers without being tardy or exceeding the capacity or travel time of the vehicles. This research shows that a proposed method based on the improved genetic search can obtain good solutions to vehicle routing problems with time constrained compared with a high degree of efficiency other heuristics. For the computational purpose, we developed a GUI-type computer program according to the proposed method and the computational results show that the proposed method is very effective on a set of standard test problems, and can be potentially useful in solving the vehicle routing problems.

The Optimal Project Combination for Urban Regeneration New Deal Projects (도시재생 뉴딜사업의 최적 사업지구 선정조합에 관한 연구)

  • Park, Jae Ho;Geem, Zong Woo;Yu, Jung Suk
    • Korea Real Estate Review
    • /
    • v.28 no.1
    • /
    • pp.23-37
    • /
    • 2018
  • The genetic algorithm (GA) and branch and bound (B&B) methods are the useful methods of searching the optimal project combination (combinatorial optimization) to maximize the project effect considering the budget constraint and the balance of regional development with regard to the Urban Regeneration New Deal policy, the core real estate policy of the Moon Jae-in government. The Ministry of Land, Infrastructure, and Transport (MOLIT) will choose 13 central-city-area-type projects, 2 economic-base-type projects, and 10 public-company-proposal-type projects among the numerous projects from 16 local governments while each government can apply only 4 projects, respectively, for the 2017 Urban Regeneration New Deal project. If MOLIT selects only those projects with a project effect maximization purpose, there will be unselected regions, which will harm the balance of regional development. For this reason, an optimization model is proposed herein, and a combinatorial optimization method using the GA and B&B methods should be sought to satisfy the various constraints with the object function. Going forward, it is expected that both these methods will present rational decision-making criteria if the central government allocates a special-purpose-limited budget to many local governments.

Optimal Selection of Classifier Ensemble Using Genetic Algorithms (유전자 알고리즘을 이용한 분류자 앙상블의 최적 선택)

  • Kim, Myung-Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.99-112
    • /
    • 2010
  • Ensemble learning is a method for improving the performance of classification and prediction algorithms. It is a method for finding a highly accurateclassifier on the training set by constructing and combining an ensemble of weak classifiers, each of which needs only to be moderately accurate on the training set. Ensemble learning has received considerable attention from machine learning and artificial intelligence fields because of its remarkable performance improvement and flexible integration with the traditional learning algorithms such as decision tree (DT), neural networks (NN), and SVM, etc. In those researches, all of DT ensemble studies have demonstrated impressive improvements in the generalization behavior of DT, while NN and SVM ensemble studies have not shown remarkable performance as shown in DT ensembles. Recently, several works have reported that the performance of ensemble can be degraded where multiple classifiers of an ensemble are highly correlated with, and thereby result in multicollinearity problem, which leads to performance degradation of the ensemble. They have also proposed the differentiated learning strategies to cope with performance degradation problem. Hansen and Salamon (1990) insisted that it is necessary and sufficient for the performance enhancement of an ensemble that the ensemble should contain diverse classifiers. Breiman (1996) explored that ensemble learning can increase the performance of unstable learning algorithms, but does not show remarkable performance improvement on stable learning algorithms. Unstable learning algorithms such as decision tree learners are sensitive to the change of the training data, and thus small changes in the training data can yield large changes in the generated classifiers. Therefore, ensemble with unstable learning algorithms can guarantee some diversity among the classifiers. To the contrary, stable learning algorithms such as NN and SVM generate similar classifiers in spite of small changes of the training data, and thus the correlation among the resulting classifiers is very high. This high correlation results in multicollinearity problem, which leads to performance degradation of the ensemble. Kim,s work (2009) showedthe performance comparison in bankruptcy prediction on Korea firms using tradition prediction algorithms such as NN, DT, and SVM. It reports that stable learning algorithms such as NN and SVM have higher predictability than the unstable DT. Meanwhile, with respect to their ensemble learning, DT ensemble shows the more improved performance than NN and SVM ensemble. Further analysis with variance inflation factor (VIF) analysis empirically proves that performance degradation of ensemble is due to multicollinearity problem. It also proposes that optimization of ensemble is needed to cope with such a problem. This paper proposes a hybrid system for coverage optimization of NN ensemble (CO-NN) in order to improve the performance of NN ensemble. Coverage optimization is a technique of choosing a sub-ensemble from an original ensemble to guarantee the diversity of classifiers in coverage optimization process. CO-NN uses GA which has been widely used for various optimization problems to deal with the coverage optimization problem. The GA chromosomes for the coverage optimization are encoded into binary strings, each bit of which indicates individual classifier. The fitness function is defined as maximization of error reduction and a constraint of variance inflation factor (VIF), which is one of the generally used methods to measure multicollinearity, is added to insure the diversity of classifiers by removing high correlation among the classifiers. We use Microsoft Excel and the GAs software package called Evolver. Experiments on company failure prediction have shown that CO-NN is effectively applied in the stable performance enhancement of NNensembles through the choice of classifiers by considering the correlations of the ensemble. The classifiers which have the potential multicollinearity problem are removed by the coverage optimization process of CO-NN and thereby CO-NN has shown higher performance than a single NN classifier and NN ensemble at 1% significance level, and DT ensemble at 5% significance level. However, there remain further research issues. First, decision optimization process to find optimal combination function should be considered in further research. Secondly, various learning strategies to deal with data noise should be introduced in more advanced further researches in the future.

A Study of the Relationship between Willingness to Participate, Expected Behavior, and Participation Constraints in Urban Farming Utilizing Hydroponics - Focusing on the Rooftop Hydroponic Farmming Project at the GSES, SNU - (수경재배를 활용한 도시농업의 참여의지, 기대행동, 참여제약요인 관계 - 서울대학교 환경대학원 옥상 수경재배 체험활동을 중심으로 -)

  • Kim, Do-Eun;Son, Gwang-Ryul;Yu, Ga-Hyoun;Son, Yong-Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.4
    • /
    • pp.76-89
    • /
    • 2023
  • One of the technologies in urban agriculture, hydroponics cultivation, has primarily focused on technological development, resulting in a lack of research on urban agriculture's cultural utilization aspects, encompassing cultural values associated with urban residents' leisure activities. Therefore, this study aimed to identify the participation constraints perceived by school community members when implementing urban farming activities using hydroponics and understand the structural relationships between the variables that influence decision-making from the perspective of leisure activities in urban farming. As a result, participation constraints in urban farming activities utilizing hydroponics were first categorized into intrinsic, interpersonal, and structural factors. Second, the results of hypothesis model verification showed that interpersonal constraints significantly influenced the participants' willingness to participate and their expected behavior. This study found the multidimensional perceptions of school community members regarding hydroponic urban farming conducted in urban spaces, particularly rooftops, and revealed the influence of decision-making factors on participation when conducting urban farming activities using hydroponic cultivation.