• Title/Summary/Keyword: GA optimization

Search Result 864, Processing Time 0.033 seconds

Distributed Hybrid Genetic Algorithms for Structural Optimization (분산 복합유전알고리즘을 이용한 구조최적화)

  • 우병헌;박효선
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.407-417
    • /
    • 2003
  • Enen though several GA-based optimization algorithms have been successfully applied to complex optimization problems in various engineering fields, GA-based optimization methods are computationally too expensive for practical use in the field of structural optimization, particularly for large- scale problems. Furthermore, a successful implementation of GA-based optimization algorithm requires a cumbersome and trial-and-error routine related to setting of parameters dependent on a optimization problem. Therefore, to overcome these disadvantages, a high-performance GA is developed in the form of distributed hybrid genetic algorithm for structural optimization on a cluster of personal computers. The distributed hybrid genetic algorithm proposed in this paper consist of a simple GA running on a master computer and multiple μ-GAs running on slave computers. The algorithm is implemented on a PC cluster and applied to the minimum weight design of steel structures. The results show that the computational time required for structural optimization process can be drastically reduced and the dependency on the parameters can be avoided.

Satellite Customer Assignment: A Comparative Study of Genetic Algorithm and Ant Colony Optimization

  • Kim, Sung-Soo;Kim, Hyoung-Joong;Mani, V.
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.2 no.1
    • /
    • pp.40-50
    • /
    • 2008
  • The problem of assigning customers to satellite channels is a difficult combinatorial optimization problem and is NP-complete. For this combinatorial optimization problem, standard optimization methods take a large computation time and so genetic algorithms (GA) and ant colony optimization (ACO) can be used to obtain the best and/or optimal assignment of customers to satellite channels. In this paper, we present a comparative study of GA and ACO to this problem. Various issues related to genetic algorithms approach to this problem, such as solution representation, selection methods, genetic operators and repair of invalid solutions are presented. We also discuss an ACO for this problem. In ACO methodology, three strategies, ACO with only ranking, ACO with only max-min ant system (MMAS), and ACO with both ranking and MMAS, are considered. A comparison of these two approaches (i,e., GA and ACO) with the standard optimization method is presented to show the advantages of these approaches in terms of computation time.

  • PDF

Weighted sum multi-objective optimization of skew composite laminates

  • Kalita, Kanak;Ragavendran, Uvaraja;Ramachandran, Manickam;Bhoi, Akash Kumar
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.21-31
    • /
    • 2019
  • Optimizing composite structures to exploit their maximum potential is a realistic application with promising returns. In this research, simultaneous maximization of the fundamental frequency and frequency separation between the first two modes by optimizing the fiber angles is considered. A high-fidelity design optimization methodology is developed by combining the high-accuracy of finite element method with iterative improvement capability of metaheuristic algorithms. Three powerful nature-inspired optimization algorithms viz. a genetic algorithm (GA), a particle swarm optimization (PSO) variant and a cuckoo search (CS) variant are used. Advanced memetic features are incorporated in the PSO and CS to form their respective variants-RPSOLC (repulsive particle swarm optimization with local search and chaotic perturbation) and CHP (co-evolutionary host-parasite). A comprehensive set of benchmark solutions on several new problems are reported. Statistical tests and comprehensive assessment of the predicted results show CHP comprehensively outperforms RPSOLC and GA, while RPSOLC has a little superiority over GA. Extensive simulations show that the on repeated trials of the same experiment, CHP has very low variability. About 50% fewer variations are seen in RPSOLC as compared to GA on repeated trials.

Hybrid Intelligent System Using PSO/Bacterial Foraging and PID Controller Tuning

  • Kim Dong-Hwa
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.22-34
    • /
    • 2006
  • o GA-BF approach for improvement of learning and optimization in GA o GA-BF has better response on various test functions o Satisfactory PID controller tuning in AVR, motor vector control systems o Potentially useful in many practically important engineering optimization problems

  • PDF

The Optimization of Truss Structures with Genetic Algorithms

  • Wu, Houxiao;Luan, Xiaodong;Mu, Zaigen
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.3 s.17
    • /
    • pp.117-122
    • /
    • 2005
  • This paper investigated the optimum design of truss structures based on Genetic Algorithms (GA's). With GA's characteristic of running side by side, the overall optimization and feasible operation, the optimum design model of truss structures was established. Elite models were used to assure that the best units of the previous generation had access to the evolution of current generation. Using of non-uniformity mutation brought the obvious mutation at earlier stage and stable mutation in the later stage; this benefited the convergence of units to the best result. In addition, to avoid GA's drawback of converging to local optimization easily, by the limit value of each variable was changed respectively and the genetic operation was performed two times, so the program could work more efficiently and obtained more precise results. Finally, by simulating evolution process of nature biology of a kind self-organize, self-organize, artificial intelligence, this paper established continuous structural optimization model for ten bars cantilever truss, and obtained satisfactory result of optimum design. This paper further explained that structural optimization is practicable with GA's, and provided the theoretic basis for the GA's optimum design of structural engineering.

  • PDF

GA-VNS-HC Approach for Engineering Design Optimization Problems (공학설계 최적화 문제 해결을 위한 GA-VNS-HC 접근법)

  • Yun, YoungSu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.1
    • /
    • pp.37-48
    • /
    • 2022
  • In this study, a hybrid meta-heuristic approach is proposed for solving engineering design optimization problems. Various approaches in many literatures have been proposed to solve engineering optimization problems with various types of decision variables and complex constraints. Unfortunately, however, their efficiencies for locating optimal solution do not be highly improved. Therefore, we propose a hybrid meta-heuristic approach for improving their weaknesses. the proposed GA-VNS-HC approach is combining genetic algorithm (GA) for global search with variable neighborhood search (VNS) and hill climbing (HC) for local search. In case study, various types of engineering design optimization problems are used for proving the efficiency of the proposed GA-VNS-HC approach

Layup Optimization of Composite Laminates with Free Edge Considering Bounded Uncertainty (물성치의 불확실성을 고려한 자유단이 있는 복합재료 적층평판의 최적화)

  • 조맹효;이승윤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.155-158
    • /
    • 2001
  • The layup optimization by genetic algorithm (GA) for the strength of laminated composites with free-edge is presented. For the calculation of interlaminar stresses of composite laminates with free edges, extended Kantorovich method is applied. In the formulation of GA, repair strategy is adopted for the satisfaction of given constraints. In order to consider the bounded uncertainty of material properties, convex modeling is used. Results of GA optimization with scattered properties are compared with those of optimization with nominal properties. The GA combined with convex modeling can work as a practical tool for light weight design of laminated composite structures since uncertainties are always encountered in composite materials.

  • PDF

Optimization of interlaminar strength with uncertainty of material properties (물성치의 불확실성을 고려한 층간강도의 최적화)

  • 조맹효;이승윤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.70-73
    • /
    • 2001
  • The layup optimization by genetic algorithm (GA) for the interlaminar strength of laminated composites with free edge is presented. For the calculation of interlaminar stresses of composite laminates with free edges, extended Kantorovich method is applied. In the formulation of GA, repair strategy is adopted for the satisfaction of given constraints. In order to consider the bounded uncertainty of material properties, convex modeling is used. Results of GA optimization with scattered properties are compared with those of optimization with nominal properties. The GA combined with convex modeling can work as a practical tool for maximum interlaminar strength design of laminated composite structures, since uncertainties are always encountered in composite materials and the optimal results can be changed.

  • PDF

Bacteria Cooperative Optimization Based on E. Coli Chemotaxis (대장균의 주화성에 근거한 박테리아 협동 최적화)

  • Jeong, Hui-Jeong;Jeong, Seong-Hun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.241-244
    • /
    • 2007
  • 본 논문에서는 박테리아의 주화성에 기초한 Bacteria Cooperative Optimization(BCO) 알고리즘을 소개한다. BCO는 Ant Colony Optimization (ACO)처럼 자연계에 존재하는 생명체의 행동양식을 모방하여 만든 최적화 알고리즘으로 크게 초기화, 측정, 행동결정, 이동으로 구성된다. 우리는 먼저 BCO 알고리즘을 설명하고 2차원 함수 최적화 문제를 이용하여 BCO알고리즘과 Genetic Algorithm(GA) 그리고 Bacterial Foraging for Distributed Optimization(BFO)의 성능 측정 결과를 기술한다. 실험 결과 BCO의 성능이 GA나 BFO보다 우수함을 보였다.

  • PDF

Promoter classification using genetic algorithm controlled generalized regression neural network

  • Kim, Kun-Ho;Kim, Byun-Gwhan;Kim, Kyung-Nam;Hong, Jin-Han;Park, Sang-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2226-2229
    • /
    • 2003
  • A new method is presented to construct a classifier. This was accomplished by combining a generalized regression neural network (GRNN) and a genetic algorithm (GA). The classifier constructed in this way is referred to as a GA-GRNN. The GA played a role of controlling training factors simultaneously. In GA optimization, neuron spreads were represented in a chromosome. The proposed optimization method was applied to a data set, consisted of 4 different promoter sequences. The training and test data were composed of 115 and 58 sequence patterns, respectively. The range of neuron spreads was experimentally varied from 0.4 to 1.4 with an increment of 0.1. The GA-GRNN was compared to a conventional GRNN. The classifier performance was investigated in terms of the classification sensitivity and prediction accuracy. The GA-GRNN significantly improved the total classification sensitivity compared to the conventional GRNN. Also, the GA-GRNN demonstrated an improvement of about 10.1% in the total prediction accuracy. As a result, the proposed GA-GRNN illustrated improved classification sensitivity and prediction accuracy over the conventional GRNN.

  • PDF