This research is aimed to design and analyze the performance of double dynamic vibration absorber (DVA) using a pendulum and a spring-mass type absorber for reducing vibration of two-DOF vibration system. The conventional fixed-points method and genetics algorithm (GA) optimization procedure are utilized in designing the optimal parameter of DVA. The frequency and damping ratio are optimized to determine the optimal absorber parameters. The simulation results show that GA optimization procedure is more effective in designing the double DVA in comparison to the fixed-points method. The experimental study is conducted to verify the numerical result.
Kang, Seok Jeong;Chung, Won Jee;Park, Seong Hak;Choi, Jong Kap;Kim, Hyo Gon;Lee, Jun Ku
Journal of the Korean Society of Manufacturing Technology Engineers
/
v.26
no.1
/
pp.74-81
/
2017
A crane is typically used as a means to lift and load equipment or materials. A surface vessel uses a towed object for underwater activity. Such a mechanism for dropping and lifting of equipment is necessary, and is called an overboarding unit. The present study is focused on the overboarding unit used for a crane structure. This paper deals with new overboarding mechanism design and GA-based $MATLAB^{(R)}$ optimization. By using a quadrilateral link mechanism, it is possible to set the constraint function for optimizing the GA method. The optimization with $MATLAB^{(R)}$ is followed by the $SolidWorks^{(R)}$ simulation and verification. When applying the proposed mechanism, the operator is expected to have a big advantage in safety and efficiency of operations. Furthermore, the technology developed in this study will be helpful in similar circumstances and in the proposed mechanism.
In this paper, we introduce a genetic optimization of fuzzy set-fuzzy model using successive tuning method to carry out the model identification of complex and nonlinear systems. To identity we use genetic alrogithrt1 (GA) sand C-Means clustering. GA is used for determination the number of input, the seleced input variables, the number of membership function, and the conclusion inference type. Information Granules (IG) with the aid of C-Means clustering algorithm help determine the initial paramters of fuzzy model such as the initial apexes of the, membership functions in the premise part and the initial values of polyminial functions in the consequence part of the fuzzy rules. The overall design arises as a hybrid structural and parametric optimization. Genetic algorithms and C-Means clustering are used to generate the structurally as well as parametrically optimized fuzzy model. To identify the structure and estimate parameters of the fuzzy model we introduce the successive tuning method with variant generation-based evolution by means of GA. Numerical example is included to evaluate the performance of the proposed model.
A new family of DC to AC converters, referred to as multilevel inverter, has received much attention from industries and researchers for its high power and voltage applications. One of the conventional techniques for implementing the switching algorithm in these inverters is optimized harmonic stepped waveform (OHSW). However, the major problem in using this technique is eliminating low order harmonics by solving the nonlinear and complex equations. In this paper, a new approach called the "bacterial foraging algorithm" (BFA) is employed. This algorithm eliminates and optimizes the harmonics in a multilevel inverter. This method has higher speed, precision, and convergence power compared with the genetic algorithm (GA), a famous evolutionary algorithm. The proposed technique can be expanded in any number of levels. The purpose of optimization is to remove some low order harmonics, as well as to ensure the fundamental harmonic retained at the desired value. As a case study, a 13-level inverter is chosen. The comparison results by MATLAB software between the two optimization methods (BFA and GA) have shown the effectiveness and superiority of BFA over GA where convergence is desired to achieve global optimum.
Journal of the Korean Society for Industrial and Applied Mathematics
/
v.2
no.1
/
pp.95-110
/
1998
Evolutionary Algorithms (EAs) are population-based optimization methods based on the principle of Darwinian natural selection. The representative methodology in EAs is genetic algorithm (GA) proposed by J. H. Holland, and the theoretical foundations of GA are the Schema Theorem and the Building Block Hypothesis. In the meaning of these foundational concepts, simple genetic algorithm (SGA) allocate more trials to the schemata whose average fitness remains above average. Although SGA does well in many applications as an optimization method, still it does not guarantee the convergence of a global optimum in GA-hard problems and deceptive problems. Therefore as an alternative scheme, there is a growing interest in a co-evolutionary system, where two populations constantly interact and co-evolve in contrast with traditional single population evolutionary algorithm. In this paper we show why the co-evolutionary algorithm works better than SGA in terms of an extended schema theorem. And predator-prey co-evolution and symbiotic co-evolution, typical approaching methods to co-evolution, are reviewed, and dynamic fitness landscape associated with co-evolution is explained. And the experimental results show a co-evolutionary algorithm works well in optimization problems even though in deceptive functions.
Antibiotic production with Streptomyces sindenensis MTCC 8122 was optimized under submerged fermentation conditions by artificial neural network (ANN) coupled with genetic algorithm (GA) and Nelder-Mead downhill simplex (NMDS). Feed forward back-propagation ANN was trained to establish the mathematical relationship among the medium components and length of incubation period for achieving maximum antibiotic yield. The optimization strategy involved growing the culture with varying concentrations of various medium components for different incubation periods. Under non-optimized condition, antibiotic production was found to be $95{\mu}g/ml$, which nearly doubled ($176{\mu}g/ml$) with the ANN-GA optimization. ANN-NMDS optimization was found to be more efficacious, and maximum antibiotic production ($197{\mu}g/ml$) was obtained by cultivating the cells with (g/l) fructose 2.7602, $MgSO_4$ 1.2369, $(NH_4)_2PO_4$ 0.2742, DL-threonine 3.069%, and soyabean meal 1.952%, for 9.8531 days of incubation, which was roughly 12% higher than the yield obtained by ANN coupled with GA under the same conditions.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2010.06a
/
pp.337-337
/
2010
갈륨-질화물 (GaN) 기반의 고 전자 이동도 트랜지스터 (High Electron Mobility Transistor, HEMT)는 GaN의 큰 밴드갭 (3.4~6.2 eV), 높은 항복전계 (Ec~3 MV/cm) 및 높은 전자 포화 속도 (saturation velocity $-107\;cm{\cdot}s-1$) 특성과 AlGaN/GaN 등과 같은 이종접합구조(Heterostructure )로부터 발생하는 높은 면밀도(Sheet Concentration)를 갖는 이차원 전자가스(Two-Dimensional Electron Gas, 2DEG) 채널로 인해 차세대 고출력/고전압 소자로서 각광받고 있다. 하지만 드레인 쪽의 게이트 에지부분에 집중되는 전계로 인한 애벌린치 할복현상(Breakdown)이 발생하는 문제점이 있다. 따라서 AlGaN/GaN HEMT의 항복전압 향상을 위한 방법으로 필드플레이트(Field-Plate) 구조가 많이 사용되고 있다. 본 논문에서는 2D 시뮬레이션을 통한 AlGaN/GaN HEMT의 필드플레이트 구조 최적화를 수행하였다. 이를 위해 ATLASTM 전산모사 프로그램을 이용하여 필드플레이트 길이, 절연체 증류 및 두께에 따른 전류 전압 특성 및 전계 분산효과에 대한 전산모사를 수행하여 그 결과를 비교, 분석 하였다, 이를 바탕으로 기존의 구조에 비해 약 300%이상 향상된 항복전압을 갖는 AlGaN/GaN HEMT의 최적화된 필드 플레이트 구조를 제안하였다.
Proceedings of the Computational Structural Engineering Institute Conference
/
2008.04a
/
pp.416-421
/
2008
A Metropolis genetic algorithm (MGA) is a newly-developed hybrid algorithm combining simple genetic algorithm (SGA) and simulated annealing (SA). In the algorithm, favorable features of Metropolis criterion of SA are incorporated in the reproduction operations of SGA. This way, MGA alleviates the disadvantages of finding imprecise solution in SGA and time-consuming computation in SA. It has been successfully applied and the efficiency has been verified for the practical structural design optimization. However, applicability of MGA for the wider range of problems should be rigorously proved through the solution of mathematical optimization problems. Thus, performances of MGA for the typical mathematical problems are investigated and compared with those of conventional algorithms such as SGA, micro genetic algorithm (${\mu}GA$), and SA. And, for better application of MGA, the effects of acceptance level are also presented. From numerical Study, it is again verified that MGA is more efficient and robust than SA, SGA and ${\mu}GA$ in the solution of mathematical optimization problems having various features.
Kim Jung-Mo;Park Chul-Hwan;Kim Seung-Wook;Kim Sang-Yong
Journal of Microbiology and Biotechnology
/
v.16
no.6
/
pp.863-869
/
2006
The behavior of submerged membrane bioreactor (SMBR) filtration systems utilizing rapid air backpulsing as a cleaning technique to remove reversible foulants was investigated using a genetic algorithm (GA). A customized genetic algorithm with suitable genetic operators was used to generate optimal time profiles. From experiments utilizing short and long periods of forward and reverse filtration, various experimental process parameters were determined. The GA indicated that the optimal values for the net flux fell between 263-270 LMH when the forward filtration time ($t_f$) was 30-37 s and the backward filtration time ($t_b$) was 0.19-0.27 s. The experimental data confirmed the optimal backpulse duration and frequency that maximized the net flux, which represented a four-fold improvement in 24-h backpulsing experiments compared with the absence of backpulsing. Consequently, the identification of a region of feasible parameters and nonlinear flux optimization were both successfully performed by the genetic algorithm, meaning the genetic algorithm-based optimization proved to be useful for solving SMBR flux optimization problems.
Nili, Mohammad Hosein;Zahraie, Banafsheh;Taghaddos, Hosein
Smart Structures and Systems
/
v.26
no.4
/
pp.533-544
/
2020
Effective bridge maintenance reduces bridge operation costs and extends its service life. The possibility of storing bridge life-cycle data in a 3D parametric model of the bridge through Bridge Information Modeling (BrIM) provides new opportunities to enhance current practices of bridge maintenance management. This study develops a Decision Support System (DSS), namely BrDSS, which employs BrIM and an efficient optimization model for bridge maintenance planning. The BrIM model in BrDSS extracts basic data of elements required for the optimization process and visualizes the inspection data and the optimization results to the user to help in decision makings. In the optimization module of the DSS, the specifically formulated Genetic Algorithm (GA) eliminates the chances of producing infeasible solutions for faster convergence. The practicality of the presented DSS was explored by utilizing the DSS in the maintenance planning of a bridge under operation in the southwest of Iran.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.