• Title/Summary/Keyword: GA optimization

Search Result 864, Processing Time 0.022 seconds

Study of Aerodynamic Design Optimization Using Genetic Algorithm (유전 알고리즘을 이용한 공력 형상 최적화 연구)

  • Kim S. W.;Kwon J. H.
    • Journal of computational fluids engineering
    • /
    • v.6 no.3
    • /
    • pp.10-18
    • /
    • 2001
  • Genetic Algorithm(GA) is applied to aerodynamic shape optimization and demonstrated its merits in global searching ability and the independency of differentiability. However, applications of GA are limited due to slow convergence rate, premature termination, and high computing costs. The present aerodynamic designs such as wing shape optimizations using GA have seldom been applied because of high computing costs. This paper has two objects; improvement of the efficiency of GA and application of GA into aerodynamic shape optimization for 2D and 3D wings. The study indicates that GA can be applied to aerodynamic design and its performance is comparable to traditional design methods.

  • PDF

A Study of A Design Optimization Problem with Many Design Variables Using Genetic Algorithm (유전자 알고리듬을 이용할 대량의 설계변수를 가지는 문제의 최적화에 관한 연구)

  • 이원창;성활경
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.117-126
    • /
    • 2003
  • GA(genetic algorithm) has a powerful searching ability and is comparatively easy to use and to apply as well. By that reason, GA is in the spotlight these days as an optimization skill for mechanical systems.$^1$However, GA has a low efficiency caused by a huge amount of repetitive computation and an inefficiency that GA meanders near the optimum. It also can be shown a phenomenon such as genetic drifting which converges to a wrong solution.$^{8}$ These defects are the reasons why GA is not widdy applied to real world problems. However, the low efficiency problem and the meandering problem of GA can be overcomed by introducing parallel computation$^{7}$ and gray code$^4$, respectively. Standard GA(SGA)$^{9}$ works fine on small to medium scale problems. However, SGA done not work well for large-scale problems. Large-scale problems with more than 500-bit of sere's have never been tested and published in papers. In the result of using the SGA, the powerful searching ability of SGA doesn't have no effect on optimizing the problem that has 96 design valuables and 1536 bits of gene's length. So it converges to a solution which is not considered as a global optimum. Therefore, this study proposes ExpGA(experience GA) which is a new genetic algorithm made by applying a new probability parameter called by the experience value. Furthermore, this study finds the solution throughout the whole field searching, with applying ExpGA which is a optimization technique for the structure having genetic drifting by the standard GA and not making a optimization close to the best fitted value. In addition to them, this study also makes a research about the possibility of GA as a optimization technique of large-scale design variable problems.

Structural Optimization Using Micro-Genetic Algorithm (마이크로 유전자 알고리즘을 이용한 구조 최적설계)

  • 한석영;최성만
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.9-14
    • /
    • 2003
  • SGA (Single Genetic Algorithm) is a heuristic global optimization method based on the natural characteristics and uses many populations and stochastic rules. Therefore SGA needs many function evaluations and takes much time for convergence. In order to solve the demerits of SGA, $\mu$GA(Micro-Genetic Algorithm) has recently been developed. In this study, $\mu$GA which have small populations and fast convergence rate, was applied to structural optimization with discrete or integer variables such as 3, 10 and 25 bar trusses. The optimized results of $\mu$GA were compared with those of SGA. Solutions of $\mu$GA for structural optimization were very similar or superior to those of SGA, and faster convergence rate was obtained. From the results of examples, it is found that $\mu$GA is a suitable and very efficient optimization algorithm for structural design.

  • PDF

Direction Vector for Efficient Structural Optimization with Genetic Algorithm (효율적 구조최적화를 위한 유전자 알고리즘의 방향벡터)

  • Lee, Hong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.3
    • /
    • pp.75-82
    • /
    • 2008
  • In this study, the modified genetic algorithm, D-GA, is proposed. D-GA is a hybrid genetic algorithm combined a simple genetic algorithm and the local search algorithm using direction vectors. Also, two types of direction vectors, learning direction vector and random direction vector, are defined without the sensitivity analysis. The accuracy of D-GA is compared with that of simple genetic algorithm. It is demonstrated that the proposed approach can be an effective optimization technique through a minimum weight structural optimization of ten bar truss.

  • PDF

Comparative Study on Structural Optimal Design Using Micro-Genetic Algorithm (마이크로 유전자 알고리즘을 적용한 구조 최적설계에 관한 비교 연구)

  • 한석영;최성만
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.82-88
    • /
    • 2003
  • SGA(Single Genetic Algorithm) is a heuristic global optimization method based on the natural characteristics and uses many populations and stochastic rules. Therefore SGA needs many function evaluations and takes much time for convergence. In order to solve the demerits of SGA, ${\mu}GA$(Micro-Genetic Algorithm) has recently been developed. In this study, ${\mu}GA$ which have small populations and fast convergence rate, was applied to structural optimization with discrete or integer variables such as 3, 10 and 25 bar trusses. The optimized results of ${\mu}GA$ were compared with those of SGA. Solutions of ${\mu}GA$ for structural optimization were very similar or superior to those of SGA, and faster convergence rate was obtained. From the results of examples, it is found that ${\mu}GA$ is a suitable and very efficient optimization algorithm for structural design.

A Real Code Genetic Algorithm for Optimum Design (실수형 Genetic-Algorithm에 의한 최적 설계)

  • 양영순;김기화
    • Computational Structural Engineering
    • /
    • v.8 no.2
    • /
    • pp.123-132
    • /
    • 1995
  • Genetic Algorithms(GA), which are based on the theory of natural evolution, have been evaluated highly for their robust performances. Traditional GA has mostly used binary code for representing design variable. The binary code GA has many difficulties to solve optimization problems with continuous design variables because of its large computer core memory size, inefficiency of its computing time, and its bad performance on local search. In this paper, a real code GA is proposed for dealing with the above problems. So, new crossover and mutation processes of GA are developed to use continuous design variables directly. The results of read code GA are compared with those of binary code GA for several single and multiple objective optimization problems. As a result of comparisons, it is found that the performance of the real code GA is better than that of the binary code GA, and concluded that the real code GA developed here can be used for the general optimization problem.

  • PDF

A Real Code Genetic Algorithm for Optimum Design (실수형 Genetic Algorithm에 의한 최적 설계)

  • 양영순;김기화
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.187-194
    • /
    • 1995
  • Traditional genetic algorithms(GA) have mostly used binary code for representing design variable. The binary code GA has many difficulties to solve optimization problems with continuous design variables because of its targe computer core memory size, inefficiency of its computing time, and its bad performance on local search. In this paper, a real code GA is proposed for dealing with the above problems. So, new crossover and mutation processes of read code GA are developed to use continuous design variables directly. The results of real code GA are compared with those of binary code GA for several single and multiple objective optimization problems. As results of comparisons, it is found that the performance of the real code GA is better than that of the binary code GA, and concluded that the rent code GA developed here can be used for the general optimization problem.

  • PDF

Structural Dynamic Optimization Using a Genetic Algorithm(GA) (유전자 알고리즘(GA)을 이용한 구조물의 동적해석 및 최적화)

  • 이영우;성활경
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.93-99
    • /
    • 2000
  • In many dynamic structural optimization problems, the goal is to reduce the total weight of the structure without causing the resonance. Up to now, gradient informations(i.e., design sensitivity) have been used to achieve the goal. For some class of dynamic problems, especially coalescent eigenvalue Problems with multiobjective optimization, the design sensitivity analysis is too much complicated mathematically and numerically. Therefore, this article proposes a new technique fur structural dynamic modification using a mode modification method with Genetic Algorithm(GA). In GA formulation, fitness is defined based on penalty function approach. Design variables are iteratively improved by using genetic algorithm. Two numerical examples are shown, (ⅰ) a cantilevered plate, and (ⅱ) H-shaped structure. The results demonstrate that the proposed method is highly efficient.

  • PDF

Micro Genetic Algorithms in Structural Optimization and Their Applications (마이크로 유전알고리즘을 이용한 구조최적설계 및 응용에 관한 연구)

  • 김종헌;이종수;이형주;구본홍
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.225-232
    • /
    • 2002
  • Simple genetic algorithm(SGA) has been used to optimize a lot of structural optimization problems because it can optimize non-linear problems and obtain the global solution. But, because of large evolving populations during many generations, it takes a long time to calculate fitness. Therefore this paper applied micro-genetic algorithm(μ -GA) to structural optimization and compared results of μ -GA with results of SGA. Additionally, the Paper applied μ -GA to gate optimization problem for injection molds by using simulation program CAPA.

  • PDF

FE MODEL UPDATING OF ROTOR SHAFT USING OPTIMIZATION TECHNIQUES (최적화 기법을 이용한 로터 축 유한요소모델 개선)

  • Kim, Yong-Han;Feng, Fu-Zhou;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.104-108
    • /
    • 2003
  • Finite element (FE) model updating is a procedure to minimize the differences between analytical and experimental results, which can be usually posed as an optimization problem. This paper aims to introduce a hybrid optimization algorithm (GA-SA), which consists of a Genetic algorithm (GA) stage and an Adaptive Simulated Annealing (ASA) stage, to FE model updating for a shrunk shaft. A good agreement of the first four natural frequencies has been achieved obtained from GASA based updated model (FEgasa) and experiment. In order to prove the validity of GA-SA, comparisons of natural frequencies obtained from the initial FE model (FEinit), GA based updated model (FEga) and ASA based updated model (FEasa) are carried out. Simultaneously, the FRF comparisons obtained from different FE models and experiment are also shown. It is concluded that the GA, ASA, GA-SA are powerful optimization techniques which can be successfully applied to FE model updating, the natural frequencies and FRF obtained from all the updated models show much better agreement with experiment than that obtained from FEinit model. However, FEgasa is proved to be the most reasonable FE model, and also FEasa model is better than FEga model.

  • PDF