• Title/Summary/Keyword: GA biosynthesis

Search Result 44, Processing Time 0.021 seconds

Glucosinolate Content Varies and Transcriptome Analysis in Different Kale Cultivars (Brassica oleracea var. acephala) Grown in a Vertical Farm (수직농장에서 자란 케일(Brassica oleracea var. acephala) 품종에 따른 글루코시놀레이트 함량의 변화 및 전사체 분석)

  • Nguyen, Thi Kim Loan;Lee, Ga Oun;Jo, Jung Su;Lee, Jun Gu;Lee, Shin-Woo;Son, Ki-Ho
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.332-342
    • /
    • 2022
  • Kale (Brassica oleracea var. acephala) is one of the most frequently consumed leafy vegetables globally, as it contains numerous nutrients; essential amino acids, phenolics, vitamins, and minerals, and is particularly rich in glucosinolates. However, the differences in the biosynthesis of glucosinolates and related gene expression among kale cultivars has been poorly reported. In this study, we investigated glucosinolates profile and content in three different kale cultivars, including green ('Man-Choo' and 'Mat-Jjang') and red kale ('Red-Curled') cultivars grown in a vertical farm, using transcriptomic and metabolomic analyses. The growth and development of the green kale cultivars were higher than those of the red kale cultivar at 6 weeks after cultivation. High-performance liquid chromatography (HPLC) analysis revealed five glucosinolates in the 'Man-Choo' cultivar, and four glucosinolates in the 'Mat-Jjang' and 'Red-Curled' cultivars. Glucobrassicin was the most predominant glucosinolate followed by gluconastrutiin in all the cultivars. In contrast, other glucosinolates were highly dependent to the genotypes. The highest total glucosinolates was found in the 'Red-Curled' cultivar, which followed by 'Man-Choo' and 'Mat-Jjang'. Based on transcriptome analysis, eight genes were involved in glucosinolate biosynthesis. The overall results suggest that the glucosinolate content and accumulation patterns differ according to the kale cultivar and differential expression of glucosinolate biosynthetic genes.

Strontium Metabolism in Higher Plants: Effect of Strontium of the Polyamine Biosynthesis during Germination of Wheat(Triticum aestivum L.) (식물체 내에서 Strontium의 대사 : 밀(Triticum aestivum L.)의 발아과정중 Polyamine 생합성에 미치는 Strontium의 영향)

  • Kim, Tae-Wan;Heinrich, Georg.
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.1
    • /
    • pp.55-71
    • /
    • 1995
  • Wheat (Triticum aestivum L.) seeds were used to study a possible relationship between strontium and polyamines (PAs) in the coleoptile, root, and endosperm during germination. When $Sr^{2+}$ (0.001 mM + 10 mM) was applied to the incubation medium with $10\;{\mu}M$ $GA_3$, great increases in putrescine (Put) were observed in root and spermidine (Spd) in the coleoptile, depending on the concentration. In germinating seeds, putrescine accumulation was induced even at a low concentration (0.01 mM Sr), whereas spermidine accumulation was stimulated considerably at a high concentration (10 mM Sr). The putrescine levels, on a gram fresh weight (g-fr-wt) basis, in the roots which were growth-inhibited by 1 and 10 mM $Sr^{2+}$ were 22.4 and 15.3 fold higher respectively than at the same concentrations of $Ca^{2+}$. The accumulation of total polyamine (TA), in particular Put and Spd, induced by Sr seemed to be an important physiological response not only on a g fr wt basis but also on an RNA basis. In contrast, the levels of agmatine (Agm) and cadaverine (Cad) were notably enhanced by 10 mM $Ca^{2+}$ in the coleoptile and root. Cadaverine was detected only in $Ca^{2+}-treated$ seedlings. However, $Ca^{2+}-treatment$ in the range of 0.001 mM to 1.0 mM resulted in reduction of TA content. The distinction of accumulated polyamines and the change in diamine (DA) / TA and tri- and tertiary (tPA) / TA ratios were likely to be a physiological difference between $Sr^{2+}$ and $Ca^{2+}$ during germination in wheat.

  • PDF

Transgenic lettuce (Lactuca sativa L.) with increased vitamin C levels using GalUR gene (GalUR 유전자를 이용한 비타민 C 증대 상추 (Lactuca sativa L.) 형질전환체 개발)

  • Lim, Mi-Young;Cho, Yi-Nam;Chae, Won-Ki;Park, Young-Soo;Min, Byung-Whan;Harn, Chee-Hark
    • Journal of Plant Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.115-120
    • /
    • 2008
  • L-Ascorbic acid (vitamin C) in vegetables is an essential component of human nutrition. The objective is to transform lettuce (Lactuca sativa L.) with GalUR gene that is involved in the vitamin C biosynthesis. The cotyledons of Hwoahong (Nongwoo Bio Co.) were used to induce the callus and shoot under the selection media with MS + 30 g/L Sucrose + 0.5 mg/L BAP + 0.1 mg/L NAA + 100 mg/L kanamycin + 200 mg/L lilacillin, pH 5.2. The shoot was developed from the cut side of the explants after 3 weeks on the selection media. We successfully transformed the lettuce with GaIUR gene and analyzed the levels of vitamin C. We found that some of the lettuce transgenic lines contained higher levels of vitamin C compared with the normal one (non-transformed). Especially, some of $T_1$ lettuces inserted by GalUR showed about $3{\sim}4$ times higher content of vitamin C compared to the non-transformed lettuce. This data support the previously work performed with GLOase transgenic $T_1$ lettuces from which several times higher content of vitamin C were identified. The $T_2$ lettuces with high content of vitamin C have been selected for further analysis.

Effect of Trinexapac-ethyl on Zoysiagrass Quality under a Shade Condition (그늘 지역에서의 Zoysiagrass에 미치는 Trinexapac-ethyl의 효과)

  • Ok, Chang-Ho
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.1
    • /
    • pp.25-31
    • /
    • 2006
  • 'Meyer' zoysiagrass(Zoysia japonica Steud.) is a popular turfgrass species used for transition zone golf course fairways and tees in mfd U.S.A golf courses because it is generally winter hardy while providing an excellent playing surface with minimal chemical and irrigation inputs. However, its functionality declines easily in many of the shaded areas of these courses. Reduced irradiance causes excessive shoot elongation, reduced tillering, and weak plants that are poorly suited to tolerate or recover from traffic and devoting. Trinexapac-ethyl (TE) effectively reduces gibberellic acid (GA) biosynthesis and subsequent shoot cell elongation. This study was initiated to evaluate TE effect on shoot elongation and stand persistence under two levels of shade in 'Meyer' zoysiagrass. A mature stand of 'Meyer' was treated with all combinations of three levels of shade(0%, 79%, and 92%) and three levels of monthly TE [0, 48 $g{\cdot}ha^{-1}$ a.i(0.5x) and 96 $g{\cdot}ha^{-1}$ a.i(1x)]. In full sun, the TE at 48 $g{\cdot}ha^{-1}$ a.i reduced clipping yield by 18% over a four-week period and, whereas the TE at 96 $g{\cdot}ha^{-1}$ a.i by 30% to 38%. Monthly application of TE at the 96 $g{\cdot}ha^{-1}$ a.i increased 'Meyer' tiller density in full sun and under 79% shade. Both rates of TE consistently reduced shoot growth under shade relative to the shaded control. Only the monthly applications of the TE at 96 $g{\cdot}ha^{-1}$ a.i consistently delayed loss of quality under 79% shade. Our results indicate TE can be an effective management practice to increase 'Meyer' zoysiagrass persistence in shaded environments.