• 제목/요약/키워드: GA3

검색결과 524건 처리시간 0.03초

Inhibition of the Algal Growth using TiO2-embedded Expanded Polystyrene (EPS) balls in Lab-scale Outdoor Experiment

  • Kim, Ga Young;Joo, Jin Chul;Ahn, Bo Reum;Lee, Dae Hong;Park, Jae Roh;Ahn, Chang Hyuk;Oh, Jong Min
    • Ecology and Resilient Infrastructure
    • /
    • 제5권3호
    • /
    • pp.174-179
    • /
    • 2018
  • $TiO_2$-embedded expanded polystyrene (TiEPS) balls with powdered $TiO_2$ particles embedded on the surface of EPS were developed, and the growth inhibition of Chlorella ellipsoidea, a green algae, was evaluated. The experiment was conducted using four reactors with various conditions of (A) natural sunlight, (B) natural sunlight + TiEPS balls, (C) dark, and (D) dark + TiEPS balls on the roof of the building during five days. Based on the analysis of cell number, cell morphology, concentrations of chlorophyll-a and phaeopigments, both surface reactions in heterogeneous photocatalysis and light shielding could inhibit the growth of C. ellipsoidea. The highly reactive hydroxyl radicals ($OH{\cdot}$) from TiEPS balls degraded the lipid cell membrane through the peroxidation reaction with the light shielding, eventually resulting in cell inactivation. Although dominant inhibitory effects on the growth of C. ellipsoidea were ambiguous, TiEPS balls were feasible to prevent and inhibit the excessive growth of algae in eutrophic water body.

비정질 InGaZnO4 박막의 전기적, 광학적 특성간의 상관관계 연구 (The Effect of Tail State on the Electrical and the Optical Properties in Amorphous IGZO)

  • 배성환;유일환;강석일;박찬
    • 한국세라믹학회지
    • /
    • 제47권4호
    • /
    • pp.329-332
    • /
    • 2010
  • In order to investigate the effect of tail state on the electrical and the optical properties in amorphous IGZO(a-IGZO), a-IGZO films were deposited at room temperature on fused silica substrats using pulsed laser deposition method. The laser pulse energy was used as the processing parameter. In-situ post annealing was carried out at $150^{\circ}C$ right after the film deposition. The $O_2$ partial pressure during the deposition and the post annealing was fixed to 10mTorr. The carrier mobility of the a-IGZO films had a range from 2 to $18\;cm^2/Vs$ at carrier concentrations greater than $10^{18}\;cm^{-3}$. As the laser energy density increased, the Hall mobility increased. And post annealing improved the Hall mobility, as well. The optical property was examined using the ultraviolet-visible spectroscopy. The a-IGZO films that have low Hall mobility exhibited stronger and broader absorption tails in >3.0 eV region. Post annealing reduced the intensity of the tail-like absorption. The absorption tail in a-IGZO films is an important factor which affects the electrical and the optical properties.

이산화탄소 지중저장 시설의 잠재적 누출 판단을 위한 DGCI(Dark Green Color Index) 적용 가능성 평가 (Applicability of DGCI (Dark Green Color Index) to Assess Potential Impacts of CO2 Leakage from the Geological Storage Site)

  • 유신이;송윤진;오희주;김유진;유가영
    • 한국기후변화학회지
    • /
    • 제7권3호
    • /
    • pp.351-356
    • /
    • 2016
  • The carbon capture and storage (CCS), which collects and stores carbon dioxide in a geological site, is a promising option to mitigate climate change. However, there is the possibility of carbon dioxide leakage from the soil in the steps of collecting, transporting, and storing. To ensure the feasibility of this technology, it is important to monitor the leakage of carbon dioxide and to assess the potential impacts. As plants are sensitive to the changes in carbon dioxide in the soil environment, we can utilize plant parameter to detect the carbon dioxide leakage. Currently, chlorophyll a content is a conventional index indicating the changes in plants, however, this method is labor intensive and it only utilizes a small portion of leaves. To overcome its limitations, a simple spectroscopic parameter, DGCI (dark green color index), was suggested as an easy and quick indicator. In this study, we compared the values of chlorophyll a contents with DGCI from the experiment investigating the impacts of high underground $CO_2$ on grape plants. Results suggest that DGCI had high correlation with chlorophyll a contents and it has high potential to be utilized as an easy indicator to monitor plants' responses to $CO_2$ treatment.

Tissue-cultured regeneration and ecological values in major bamboo species

  • Sharma, Avinash;Manpoong, Chowlani;Gohain, Anwesha;Pandey, Himanshu;Padu, Gompi;Aku, Hage
    • Journal of Ecology and Environment
    • /
    • 제46권3호
    • /
    • pp.218-242
    • /
    • 2022
  • Background: Promising specific growth regulators are employed in the tissue cultures of various bamboo species. Specific natural hardening mixtures support the acclimatization and adaptation of bamboo under protected cultivation. Results: The growth regulators like 2, 4-Dichlorophenoxyacetic acid (2, 4-D), Naphthaleneacetic Acid (NAA), Thidiazuron (TDZ), 6-Benzylaminopurine (BAP), Kinetin, Gelrite, Benzyl Adenine (BA), Indole Butyric Acid (IBA), Coumarin, Putrescine, Gibberellic acid (GA3), Indole Acetic Acid (IAA) has been widely used for callus induction, root regeneration and imposing plant regeneration in various species of bamboo such as Bambusa spp. and Dendrocalamus spp. Different combinations of growth regulators and phytohormones have been used for regenerating some of the major bamboo species. Natural hardening materials such as cocopeat, vermicompost, perlite, cow dung, farmyard manure, compost, soil, garden soil, and humus soil have been recommended for the acclimatization and adaptation of bamboo species. Standard combinations of growth regulators and hardening mixtures have imposed tissue culture, acclimatization, and adaptation in major bamboo species. Conclusions: Bamboo contributes to soil fertility improvement and stabilization of the environment. Bamboo species are also involved in managing the biogeochemical cycle and have immense potential for carbon sequestration and human use. This paper aims to review the various growth regulators, natural mixtures, and defined media involved in regenerating major bamboo species through in vitro propagation. In addition, the ecological benefits of safeguarding the environment are also briefly discussed.

고효율 질화갈륨계 발광 다이오드용 전자선 증착 ITO 투명 전도 전극 연구 (Electron Beam Evaporated ITO Transparent Electrode for Highly Efficiency GaN-based Light Emitting Diode)

  • 서재원;오화섭;강기만;문성민;곽준섭;이국회;이우현;박영호;박해성
    • 대한금속재료학회지
    • /
    • 제46권10호
    • /
    • pp.683-690
    • /
    • 2008
  • In order to develop transparent electrodes for high efficiency GaN-based light emitting diodes (LEDs), the electrical and optical properties of the electron beam evaporated ITO contacts have been investigated as a function of the deposition temperature and flow rate of oxygen during the deposition. As the deposition temperature increases from $140^{\circ}C$ to $220^{\circ}C$, the resistivity of the ITO films decreases slightly from $4.0{\times}10^{-4}{\Omega}cm$ to $3.3{\times}10^{-4}{\Omega}cm$, meanwhile the transmittance of the ITO films significantly increases from 67% to 88% at the wavelength of 470 nm. When the flow rate of oxygen during the deposition increases from 2 sccm to 4 sccm, the resistivity of the ITO films increases from $3.6{\times}10^{-4}{\Omega}cm$ to $7.4{\times}10^{-4}{\Omega}cm$, meanwhile the transmittance of the ITO films increases from 86% to 99% at 470 nm. Blue LEDs fabricated with the electron beam evaporated ITO electrode show that the ITO films deposited at $200^{\circ}C$ and 3 sccm of the oxygen flow rate give a low forward-bias voltage of 3.55 V at injection current of 20 mA with a highest output power.

자기조직화에 의한 InAs 양자점 구조 형성에 미치는 수소플라즈마의 효과 (Effects of hydrogen plasma on the formation of self-organized InAs-quantum dot structure)

  • 박용주;김은규;민석기
    • 한국결정성장학회지
    • /
    • 제6권3호
    • /
    • pp.351-359
    • /
    • 1996
  • ECR (electron cyclotron resonance) 플라즈마원이 장착되어 있는 화학선에피탁시 (chemical beam epitaxy : CBE) 장치를 사용하여 InAs 양자점 구조형성에 미치는 수소플라즈마의 효과에 대하여 조사하였다. 자기조직화(self-organized)에 의해 GaAs 기판위에서 InAs 양자점의 형성을 RHEED(reflection high energy electron diffraction)로 관측한 결과 수소가스 및 수소플라즈마의 영향을 받지 않은 상태에서는 1.9 ML(monolayer)의 InAs 층성장(layer growth) 후에 형성되는데 비해 수소플아즈마를 조사한 상태에서는 약 2.6 ML의 InAs 층성장(layer growth) 후에 형성되는데 비해 수소플아즈마를 조사한 상태에서는 약 2.6 ML의 InAs층이 성장된 후 뒤늦게 이루어짐을 확인하였다. 기판의 온도 $370^{\circ}C$에서 동일한 조건으로 형성시킨 InAs 양자점의 밀도 및 크기는 수소플라즈마의 영향을 받지 않은 경우 $1.9{\times}10^{11}cm^{-2}$ 및 17.7 nm에서 수소플라즈마를 쪼인 경우 $1.3{\times}10^{11}cm^{-2}$ 및 19.4 nm로 양자점 형성 다소 완화되는 것으로 나타났다. 또한, 수소플아즈마에 의한 InAs 양자점의 PL(photoluminescence) 신호의 적색이동(red shift)과 반치폭 증가로부터 양자점 크기의 증가와 균일성이 다소 감소되는 모습을 알 수 있었다. 이와같은 수소플라즈마의 영향은 GaAs 기판과 InAs 사이의 부정합 변형환화 효과에의해 InAs의 충성장을 강화시키는 원자상 수소의 작용때문인 것으로 고려되었다.

  • PDF

InAs 양자점 형성 방법이 양자점 적외선 소자 특성에 미치는 효과 (Effect of Growth Methods of InAs Quntum Dots on Infrared Photodetector Properties)

  • 서동범;황제환;오보람;노삼규;김준오;이상준;김의태
    • 한국재료학회지
    • /
    • 제28권11호
    • /
    • pp.659-662
    • /
    • 2018
  • We report the properties of infrared photodetectors based on two kinds of quantum dots(QDs): i) 2.0 ML InAs QDs by the Stranski-Krastanov growth mode(SK QDs) and ii) sub-monolayer QDs by $4{\times}[0.3ML/1nm\;In_{0.15}Ga_{0.85}As]$ deposition(SML QDs). The QD infrared photodetector(QDIP) structure of $n^+-n^-(QDs)-n^+$ is epitaxially grown on GaAs (100) wafers using molecular-beam epitaxy. Both the bottom and top contact GaAs layers are Si doped at $2{\times}10^{18}/cm^3$. The QD layers are grown with Si doping of $2{\times}10^{17}/cm^3$ and capped by an $In_{0.15}Ga_{0.85}As$ layer at $495^{\circ}C$. The photoluminescence peak(1.24 eV) of the SML QDIP is blue-shifted with respect to that (1.04 eV) of SK QDIPs, suggesting that the electron ground state of SML QDIP is higher than that of the SK QDIP. As a result, the photoresponse regime(${\sim}9-14{\mu}m$) of the SML QDIP is longer than that (${\sim}6-12{\mu}m$) of the SK QDIP. The dark current of the SML QDIP is two orders of magnitude smaller value than that of the SK QDIP because of the inserted $Al_{0.08}Ga_{0.92}As$ layer.

카사바 잎 절편 유래 체세포배 배양시 배지조성이 기내 식물체 재분화에 미치는 영향 (Effect of Medium Composition on in Vitro Shoot Regeneration from Leaves of Cassava (Manihot esculenta Crantz) Through Somatic Embryogenesis and Callus Induction)

  • 권영희;이정관;김희규;김경옥;김주형
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2020년도 춘계학술대회
    • /
    • pp.19-19
    • /
    • 2020
  • The Cassava(Manihot esculenta Crantz) is a tropical root crop, originally from Amazonia, that provides the staple food of an estimated 800 million people worldwide. It belongs to the family Euphorbiaceae which also includes rubber (Hevea brasiliensis) and castor bean (Ricinus communis). Among tropical crops, rice, sugarcane, maize and cassava are the most important sources of calories for human consumption. Problems in the propagation of cassava are virus diseases and low rates of seed germination. So we tried to optimize protocols for mass production of somatic embryo amenable to large-scale vegetative propagation of Cassava. After in vitro eight-week culture of leaves of Cassava, the medium which contained the 2,4-D, BAP and IBA showed the highest callus induction rate, embryogenesis callus formation rate and somatic embryo formation in Cassava culture. In the medium with GA3 and myo-inositol, shoots were most vigorously regenerated from somatic embryos of Cassava. Our experiments confirmed that in vitro growth and multiplication of plantlets could depend on its reaction to the different medium composition, and this micropropagation techniques could be a useful system for healthy and vigorous plant production.

  • PDF

UV Responsive Characteristics of n-Channel Schottky Barrier MOSFET with ITO as Source/Drain Contacts

  • Kim, Tae-Hyeon;Lee, Chang-Ju;Kim, Dong-Seok;Sung, Sang-Yun;Heo, Young-Woo;Lee, Jung-Hee;Hahm, Sung-Ho
    • 센서학회지
    • /
    • 제20권3호
    • /
    • pp.156-161
    • /
    • 2011
  • We fabricated a schottky barrier metal oxide semiconductor field effect transistor(SB-MOSFET) by applying indium-tin-oxide(ITO) to the source/drain on a highly resistive GaN layer grown on a silicon substrate. The MOSFET, with 10 ${\mu}M$ gate length and 100 ${\mu}M$ gate width, exhibits a threshold gate voltage of 2.7 V, and has a sub-threshold slope of 240 mV/dec taken from the $I_{DS}-V_{GS}$ characteristics at a low drain voltage of 0.05 V. The maximum drain current is 18 mA/mm and the maximum transconductance is 6 mS/mm at $V_{DS}$=3 V. We observed that the spectral photo-response characterization exhibits that the cutoff wavelength was 365 nm, and the UV/visible rejection ratio was about 130 at $V_{DS}$ = 5 V. The MOSFET-type UV detector using ITO, has a high UV photo-responsivity and so is highly applicable to the UV image sensors.

The Short Channel Effect Immunity of Silicon Nanowire SONOS Flash Memory Using TCAD Simulation

  • Yang, Seung-Dong;Oh, Jae-Sub;Yun, Ho-Jin;Jeong, Kwang-Seok;Kim, Yu-Mi;Lee, Sang Youl;Lee, Hi-Deok;Lee, Ga-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권3호
    • /
    • pp.139-142
    • /
    • 2013
  • Silicon nanowire (SiNW) silicon-oxide-nitride-oxide-silicon (SONOS) flash memory devices were fabricated and their electrical characteristics were analyzed. Compared to planar SONOS devices, these SiNW SONOS devices have good program/erase (P/E) characteristics and a large threshold voltage ($V_T$) shift of 2.5 V in 1ms using a gate pulse of +14 V. The devices also show excellent immunity to short channel effects (SCEs) due to enhanced gate controllability, which becomes more apparent as the nanowire width decreases. This is attributed to the fully depleted mode operation as the nanowire becomes narrower. 3D TCAD simulations of both devices show that the electric field of the junction area is significantly reduced in the SiNW structure.