• Title/Summary/Keyword: G2 cell cycle arrest

Search Result 419, Processing Time 0.021 seconds

Cell Cycle Arrest of Extract from Artemisia annua Linné. Via Akt-mTOR Signaling Pathway in HCT116 Colon Cancer Cells (HCT116 대장암세포에서 Akt-mTOR 신호경로를 통한 개똥쑥 추출물 (AAE)의 세포주기 억제 효과)

  • Kim, Bo Min;Kim, Guen Tae;Lim, Eun Gyeong;Kim, Eun Ji;Kim, Sang Yong;Ha, Sung Ho;Kim, Young Min
    • KSBB Journal
    • /
    • v.30 no.5
    • /
    • pp.223-229
    • /
    • 2015
  • In this study, extract from Artemisia annua in L. (AAE) is known as a medicinal herb that is effective against cancer. The cell cycle is regulated by the activation of cyclin-dependent kinase (CDK)/cyclin complex. We will focus on regulation of CDK2 by cyclin E. cyclin E is associated with CDK2 to regulate progression from G1 into S phase. Akt is known to play an important role in cell proliferation and cell survival. Activation of Akt increases mTOR activity that promotes cell proliferation and cancer growth. In this study, we investigated that AAE-induced cell cycle arrest at G1/S phase in HCT116 colon cancer. Treatment of AAE shows that reduced activation of Akt decreases mTOR/Mdm2 activity and then leads to increase the activation of p53. The active p53 promotes activation of p21. p21 induces inactivation of CDK2/cyclin E complex and occurs cell cycle arrest at G1/S phase. We treated LY294002 (Akt inhibitor) and Rapamycin (mTOR inhibitor) to know the relationship between the signal transduction of proteins associated with cell cycle arrest. These results suggest that AAE induces cell cycle arrest at G1/S phase by Akt/mTOR pathway in HCT116 colon cancer cell.

G1 Arrest of the Cell Cycle by Gomisin N, a Dibenzocyclooctadiene Lignan, Isolated from Schizandra chinensis Baill in Human Leukemia U937 Cells (오미자에서 분리된 dibenzocyclooctadiene lignan의 일종인 gomisin N에 의한 인체혈구암세포의 세포주기 G1 arrest 유발)

  • Park, Cheol;Hwang, Hye-Jin;Choi, Byung-Tae;Choi, Tae-Hyun;Kim, Byung-Woo;Choi, Young-Whan;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.977-982
    • /
    • 2010
  • We investigated the anti-cancer effects of two dibenzocyclooctadiene lignans, gomisin A and gomisin N, isolated from Schizandra chinensis Baill, in human promyelocytic U937 cells. Gomisin N, but not gomisin A, inhibited cell growth in a concentration-dependent manner, which was associated with the induction of G1 arrest of the cell cycle. G1 arrest induced by gomisin N was correlated with down-regulation of cyclin E, cyclin-dependent kinase (Cdk) 2 and Cdk4, and a concomitant up-regulation of Cdk inhibitors such as p16 (INK4A) and p21 (WAF1/CIP1). Furthermore, gomisin N inhibited phosphorylation of retinoblastoma protein (pRB) and p130, and expression of transcription factor E2Fs. The results indicated that growth inhibition by gomisin N is related to cell cycle arrest at G1 in U937 cells and these findings suggest that gomisin N may be a useful chemotherapeutic agent.

Anti-breast cancer activity of Fine Black ginseng (Panax ginseng Meyer) and ginsenoside Rg5

  • Kim, Shin-Jung;Kim, An Keun
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.125-134
    • /
    • 2015
  • Background: Black ginseng (Ginseng Radix nigra, BG) refers to the ginseng steamed for nine times and fine roots (hairy roots) of that is called fine black ginseng (FBG). It is known that the content of saponin of FBG is higher than that of BG. Therefore, in this study, we examined antitumor effects against MCF-7 breast cancer cells to target the FBG extract and its main component, ginsenoside Rg5 (Rg5). Methods: Action mechanism was determined by MTT assay, cell cycle assay and western blot analysis. Results: The results from MTT assay showed that MCF-7 cell proliferation was inhibited by Rg5 treatment for 24, 48 and 72 h in a dose-dependent manner. Rg5 at different concentrations (0, 25, 50 and $100{\mu}M$), induced cell cycle arrest in G0/G1 phase through regulation of cell cycle-related proteins in MCF-7 cells. As shown in the results from western blot analysis, Rg5 increased expression of p53, $p21^{WAF1/CIP1}$ and $p15^{INK4B}$ and decreased expression of Cyclin D1, Cyclin E2 and CDK4. Expression of apoptosiserelated proteins including Bax, PARP and Cytochrome c was also regulated by Rg5. These results indicate that Rg5 stimulated cell apoptosis and cell cycle arrest at G0/G1 phase via regulation of cell cycle-associated proteins in MCF-7 cells. Conclusion: Rg5 promotes breast cancer cell apoptosis in a multi-path manner with higher potency compared to 20(S)-ginsenoside Rg3 (Rg3) in MCF-7 (HER2/ER+) and MDA-MB-453 (HER2+/ER) human breast cancer cell lines, and this suggests that Rg5 might be an effective natural new material in improving breast cancer.

Cellular Effects of Troglitazone on YD15 Tongue Carcinoma Cells

  • Loan, Ta Thi;Yoo, Hoon
    • International Journal of Oral Biology
    • /
    • v.41 no.3
    • /
    • pp.113-118
    • /
    • 2016
  • An FDA approved drug for the treatment of type II diabetes, Troglitazone (TRO), a peroxisome proliferator-activated receptor gamma agonist, is withdrawn due to severe idiosyncratic hepatotoxicity. In the search for new applications of TRO, we investigated the cellular effects of TRO on YD15 tongue carcinoma cells. TRO suppressed the growth of YD15 cells in the MTT assay. The inhibition of cell growth was accompanied by the induction of cell cycle arrest at $G_0/G_1$ and apoptosis, which are confirmed by flow cytometry and western blotting. TRO also suppressed the expression of cell cycle proteins such as cyclin D1, cdk2, cdk4, cyclin B1, cdk1(or cdc2), cyclin E1 and cyclin A. The inhibition of cell cycle proteins was coincident with the up-regulation of $p21^{CIP1/WAF1}$ and $p27^{KIP1}$. In addition, TRO induces the activation of caspase-3 and caspase-7, as well as the cleavage of PARP. Further, TRO suppressed the expressions of Bcl-2 without affecting the expressions of Bad and Bax. Overall, our data supports that TRO induces cell cycle arrest and apoptosis on YD15 cells.

Anti-Proliferative Effect of Polysaccharides from Salicornia herbacea on Induction of G2/M Arrest and Apoptosis in Human Colon Cancer Cells

  • Ryu, Deok-Seon;Kim, Seon-Hee;Lee, Dong-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1482-1489
    • /
    • 2009
  • In this study, we investigated the anti-proliferative effect of polysaccharides from Salicornia herbacea on HT-29 human colon cancer cells. Crude polysaccharides from S. herbacea (CS) were prepared by extraction with hot steam water, and fine polysaccharides from S. herbacea (PS) were obtained through further size exclusion chromatography. The anti-proliferative effect of CS and PS were measured using the MTS assay, apoptosis analysis, cell cycle analysis, and RT-PCR. HT-29 cells were treated with CS or PS at different dosages (0.5, 1, 2, 4 mg $ml^{-1}$) for 24 or 48 h. CS and PS inhibited proliferation and stimulated apoptosis of cells in a dose-dependent manner. Flow cytometric analysis after Annexin V-FITC and PI staining revealed that treatment with CS or PS increased total apoptotic death of cells to 24.99% or 91.59%, respectively, in comparison with the control (13.51 %). PS increased early apoptotic death substantially - up to 12 times more than the control. Treatment with CS or PS resulted in a concentration-dependent increase of the G2/M cell population of the cell cycle as determined by flow cytometry. G2/M arrest was induced significantly with the highest concentration (4 mg $ml^{-1}$) of PS. RT-PCR was performed to study the correlation between G2/M arrest and transcription of cell cycle control genes. The anti-proliferative activity of CS and PS was accompanied by inhibition of cyclin B1, and Cdc 2 mRNA. Moreover, both CS and PS induced expression of the p53 tumor suppressor gene and the Cdk inhibitor p21. These results suggest that polysaccharides from S. herbacea have anti-cancer activity in human colon cancer cells.

Methanol Extracts of Codium fragile Induces Apoptosis through G1/S Cell Cycle Arrest in FaDu Human Hypopharynx Squamous Carcinoma Cells

  • Lee, Seul Ah;Park, Bo-Ram;Moon, Sung Min;Kim, Do Kyung;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • v.43 no.2
    • /
    • pp.61-68
    • /
    • 2018
  • Codium fragile (Suringar) Hariot is an edible green seaweed that belong to the Codiaceae family and has been used in Oriental medicine for the treatment of enterobiasis, dropsy, and dysuria. Methanol extract of codium fragile has anti-oxidant, anti-inflammatory and anti-cancer properties, although the anti-cancer effect on oral cancer has not yet been reported. In this study, we investigated the anti-cancer activity and the mechanism of cell death by methanol extracts of Codium fragile (MeCF) on human FaDu hypopharyngeal squamous carcinoma cells. Our data showed that MeCF inhibits cell viability in a dose-dependent manner, and markedly induced apoptosis, as determined by the MTT assay, Live/Dead assay, and DAPI stain. In addition, MeCF induced the proteolytic cleavage of procaspase -3, -7, -9 and poly(ADP-ribose) polymerase(PARP), and upregulated or downregulated the expression of mitochondrial-apoptosis factor, Bax(pro-apoptotic factor), and Bcl-2(anti-apoptotic factor). Futhermore, MeCF induced a cell cycle arrest at the G1/S phase through suppressing the expression of the cell cycle cascade proteins, p21, CDK4, CyclinD1, and phospho-Rb. Taken together, these results indicated that MeCF inhibits cell growth, and this inhibition is mediated by caspase- and mitochondrial-dependent apoptotic pathways through cell cycle arrest at the G1/S phase in human FaDu hypopharyngeal squamous carcinoma cells. Therefore, methanol extracts of Codium fragile can be provided as a novel chemotherapeutic drug due to its growth inhibition effects and induction of apoptosis in human oral cancer cells.

Viriditoxin Induces G2/M Cell Cycle Arrest and Apoptosis in A549 Human Lung Cancer Cells

  • Park, Ju Hee;Noh, Tae Hwan;Wang, Haibo;Kim, Nam Deuk;Jung, Jee H.
    • Natural Product Sciences
    • /
    • v.21 no.4
    • /
    • pp.282-288
    • /
    • 2015
  • Viriditoxin is a fungal metabolite isolated from Paecilomyces variotii, which was derived from the giant jellyfish Nemopilema nomurai. Viriditoxin was reported to inhibit polymerization of FtsZ, which is a key protein for bacterial cell division and a structural homologue of eukaryotic tubulin. Both tubulin and FtsZ contain a GTP-binding domain, have GTPase activity, assemble into protofilaments, two-dimensional sheets, and protofilament rings, and share substantial structural identities. Accordingly, we hypothesized that viriditoxin may inhibit eukaryotic cell division by inhibiting tubulin polymerization as in the case of bacterial FtsZ inhibition. Docking simulation of viriditoxin to ${\beta}-tubulin$ indicated that it binds to the paclitaxel-binding domain and makes hydrogen bonds with Thr276 and Gly370 in the same manner as paclitaxel. Viriditoxin suppressed growth of A549 human lung cancer cells, and inhibited cell division with G2/M cell cycle arrest, leading to apoptotic cell death.

Ochnaflavone, a Natural Biflavonoid, Induces Cell Cycle Arrest and Apoptosis in HCT-15 Human Colon Cancer Cells

  • Kang, You-Jin;Min, Hye-Young;Hong, Ji-Young;Kim, Yeong-Shik;Kang, Sam-Sik;Lee, Sang-Kook
    • Biomolecules & Therapeutics
    • /
    • v.17 no.3
    • /
    • pp.282-287
    • /
    • 2009
  • Ochnaflavone is a natural biflavonoid and mainly found in the caulis of Lonicera japonica (Caprifoliaceae). Biological activities such as anti-inflammatory and anti-atherogenic effects have been previously reported. The anticancer activity of ochnaflavone, however, has been poorly elucidated yet. In the present study, we investigated the effect of ochnaflavone on the growth inhibitory activity in cultured human colon cancer cell line HCT-15. Ochnaflavone inhibited the proliferation of the cancer cells with an $IC_{50}$ value of $4.1{\mu}M$. Flow cytometric analysis showed that ochnaflavone arrested cell cycle progression in the G2/M phase, and induced the increase of sub-G1 peak in a concentration-dependent manner. Induction of cell cycle arrest was correlated with the modulation of the expression of cell cycle regulating proteins including cdc2 (Tyr15), cyclin A, cyclin B1 and cyclin E. The increase of sub-G1 peak by the higher concentrations of ochnaflavone (over $20{\mu}M$) was closely related to the induction of apoptosis, which was evidenced by the induction of DNA fragmentation, activation of caspase-3, -8 and -9, and cleavage of poly-(ADP-ribose) polymerase. These findings suggest that the cell cycle arrest and induction of apoptosis might be one possible mechanism of actions for the anti-proliferative activity of ochnaflavone in human colon cancer cells.

Ethanol Extract from Cnidium monnieri (L.) Cusson Induces G1 Cell Cycle Arrest by Regulating Akt/GSK-3β/p53 Signaling Pathways in AGS Gastric Cancer Cells (AGS 위암세포에서 Akt/GSK-3β/p53 신호경로 조절을 통한 벌사상자 에탄올 추출물의 G1 Cell Cycle Arrest 유도 효과)

  • Lim, Eun Gyeong;Kim, Eun Ji;Kim, Bo Min;Kim, Sang-Yong;Ha, Sung Ho;Kim, Young Min
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.4
    • /
    • pp.417-425
    • /
    • 2017
  • Cnidium monnieri (L.) Cusson is distributed in China and Korea, and the fruit of C. monnieri is used as traditional Chinese medicine to treat carbuncle and pain in female genitalia. In this study, we examined the anti-proliferation and cell cycle arrest effects of ethanol extracts from C. monnieri (CME) in AGS gastric cancer cells. Our results show that CME suppressed cell proliferation and induced release of lactate dehydrogenase (LDH) in AGS cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay and LDH assay. Cell morphology was altered by CME in a dose-dependent manner. In order to identify the cell cycle arrest effects of CME, we investigated cell cycle analysis after CME treatment. In our results, CME induced cell cycle arrest at G1 phase. Protein kinase B (Akt) plays a major role in cell survival mechanisms such as growth, division, and metastasis. Akt protein regulates various downstream proteins such as glycogen synthase kinase-$3{\beta}$ (GSK-$3{\beta}$) and tumor protein p53 (p53). Expression levels of p-Akt, p-GSK-$3{\beta}$, p53, p21, cyclin E, and cyclin-dependent kinase 2 (CDK2) were determined by Western blot analysis. Protein levels of p-Akt, p-GSK-$3{\beta}$, and cyclin E were reduced while those of p53, p21, and p-CDK2 (T14/Y15) were elevated by CME. Moreover, treatment with CME, LY294002 (phosphoinositide 3-kinase/Akt inhibitor), BIO (GSK-$3{\beta}$ inhibitor), and Pifithrin-${\alpha}$ (p53 inhibitor) showed that cell cycle arrest effects were mediated through regulation of the Akt/GSK-$3{\beta}$/p53 signaling pathway. These results suggest that CME induces cell cycle arrest at G1 phase via the Akt/GSK-$3{\beta}$/p53 signaling pathway in AGS gastric cancer cells.

Role of Intracellular Calcium in Clotrimazole-Induced Alteration of Cell Cycle Inhibitors, p53 and p27, in HT29 Human Colon Adenocarcinoma Cells

  • Thapa, Dinesh;Kwon, Jun-Bum;Kim, Jung-Ae
    • Biomolecules & Therapeutics
    • /
    • v.16 no.1
    • /
    • pp.21-27
    • /
    • 2008
  • Clotrimazole (CLT), a potent antifungal drug, is known to inhibit tumor cell proliferation. In the present study, we examined the role of intracellular $Ca^{2+}$ in CLT-induced cell cycle arrest of colon adenocarcinoma HT29 cells. CLT inhibited growth of HT29 cells in a concentration-dependent manner, which was associated with inhibition of cell cycle progression at the G(1)-S phase transition and an increase in the expression of cell cycle inhibitor proteins p27 and p53. CLT also suppressed the $Ca^{2+}$ overload by A23187, a calcium ionophore, suggesting its role in modulation of intracellular $Ca^{2+}$ concentration in HT29 cells. The simultaneous application of CLT and A23187 with addition of $CaCl_2$ (1mM) to the medium significantly reversed CLT-induced p27 and p53 protein level increase and growth suppression. Our results suggest that CLT induces cell cycle arrest of colon adenocarcinoma HT29 cells via induction of p27 and p53, which may, at least in part, be mediated by alteration of intracellular $Ca^{2+}$ level.