• Title/Summary/Keyword: G2/M phase arrest

Search Result 195, Processing Time 0.028 seconds

Tetrazolium Violet Induced Apoptosis and Cell Cycle Arrest in Human Lung Cancer A549 Cells

  • Zhang, Xiao-Hong;Zhang, Nan;Lu, Jian-Mei;Kong, Qing-Zhong;Zhao, Yun-Feng
    • Biomolecules & Therapeutics
    • /
    • v.20 no.2
    • /
    • pp.177-182
    • /
    • 2012
  • Tetrazolium violet is a tetrazolium salt and has been proposed as an antitumor agent. In this study, we reported for the first time that tetrazolium violet not only inhibited human lung cancer A549 cell proliferation but also induced apoptosis and blocked cell cycle progression in the G1 phase. The results showed that tetrazolium violet significantly decreased the viability of A549 cells at $5-15{\mu}M$. Tetrazolium violet -induced apoptosis in A549 cells was confirmed by H33258 staining assay. In A549, tetrazolium violet blocked the progression of the cell cycle at G1 phase by inducing p53 expression and further up-regulating p21/WAF1 expression. In addition, an enhancement in Fas/APO-1 and its two forms of ligands, membrane-bound Fas ligand (mFasL) and soluble Fas ligand (sFasL), as well as caspase, were responsible for the apoptotic effect induced by tetrazolium violet. The conclusion of this study is that tetrazolium violet induced p53 expression which caused cell cycle arrest and apoptosis. These findings suggest that tetrazolium violet has strong potential for development as an agent for treatment lung cancer.

Extracts of Opuntia humifusa Fruits Inhibit the Growth of AGS Human Gastric Adenocarcinoma Cells

  • Hahm, Sahng-Wook;Park, Jieun;Park, Kun-Young;Son, Yong-Suk;Han, Hyungchul
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.1
    • /
    • pp.31-37
    • /
    • 2016
  • Opuntia humifusa (OHF) has been used as a nutraceutical source for the prevention of chronic diseases. In the present study, the inhibitory effects of ethyl acetate extracts of OHF on the proliferation of AGS human gastric cancer cells and the mode of action were investigated. To elucidate the antiproliferative mechanisms of OHF in cancer cells, the expression of genes related to apoptosis and cell cycle arrest were determined with real-time PCR and western blot. The cytotoxic effect of OHF on AGS cells was observed in a dose-dependent manner. Exposure to OHF ($100{\mu}g/mL$) significantly induced (P<0.05) the G1 phase cell cycle arrest. Additionally, the apoptotic cell population was greater (P<0.05) in OHF ($200{\mu}g/mL$) treated AGS cells when compared to the control. The expression of genes associated with cell cycle progression (Cdk4, Cdk2, and cyclin E) was significantly downregulated (P<0.05) by the OHF treatment. Moreover, the expression of Bax and caspase-3 in OHF treated cells was higher (P<0.05) than in the control. These findings suggest that OHF induces the G1 phase cell cycle arrest and activation of mitochondria-mediated apoptosis pathway in AGS human gastric cancer cells.

The Combined Effect of Gamma Knife Irradiation and p53 Gene Transfection in Human Malignant Glioma Cell Lines

  • Kim, Jeong-Eun;Paek, Sun-Ha;Kim, Dong-Gyu;Chung, Hyun-Tai;Kim, Young-Yim;Jung, Hee-Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.1
    • /
    • pp.48-53
    • /
    • 2005
  • Objective: The purpose of this study is to elucidate in vitro responses to combined gamma knife irradiation and p53 gene transfection on human malignant glioma cell lines. Methods: Two malignant human glioma cell lines, U87MG (p53-wild type) and U373MG (p53-mutant) were transfected with an adenoviral vector containing p53 (MOI of 50) before and after applying 20Gy of gamma irradiation. Various assessments were performed, including, cell viability by MTT assay; apoptosis by annexin assay; and cell cycle by flow cytometry, for the seven groups: mock, p53 only, gamma knife (GK) only, GK after LacZ, LacZ after GK, GK after p53, p53 after GK. Results: Cell survival decreased especially, in the subgroup transfected with p53 after gamma irradiation. Apoptosis tended to increase in p53 transfected U373 MG after gamma irradiation (apoptotic rate, 38.9%). The G2-M phase cell cycle arrest markedly increased by transfecting with p53, 48 hours after gamma knife irradiation in U373 MG (G2-M phase, 90.8%). Conclusion: These results suggest that the in vitro effects of combined gamma knife irradiation and p53 gene transfection is an augmentation of apoptosis and G2-M phase cell cycle arrest, which are more exaggerated in U373 MG with p53 transfection after gamma knife irradiation.

Ethanol extract of Innotus obliquus (Chaga mushroom) induces $G_1$ cell cycle arrest in HT-29 human colon cancer cells

  • Lee, Hyun Sook;Kim, Eun Ji;Kim, Sun Hyo
    • Nutrition Research and Practice
    • /
    • v.9 no.2
    • /
    • pp.111-116
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Inonotus obliquus (I. obliquus, Chaga mushroom) has long been used as a folk medicine to treat cancer. In the present study, we examined whether or not ethanol extract of I. obliquus (EEIO) inhibits cell cycle progression in HT-29 human colon cancer cells, in addition to its mechanism of action. MATERIALS/METHODS: To examine the effects of Inonotus obliquus on the cell cycle progression and the molecular mechanism in colon cancer cells, HT-29 human colon cancer cells were cultured in the presence of $2.5-10{\mu}g/mL$ of EEIO, and analyzed the cell cycle arrest by flow cytometry and the cell cycle controlling protein expression by Western blotting. RESULTS: Treatment cells with $2.5-10{\mu}g/mL$ of EEIO reduced viable HT-29 cell numbers and DNA synthesis, increased the percentage of cells in $G_1$ phase, decreased protein expression of CDK2, CDK4, and cyclin D1, increased expression of p21, p27, and p53, and inhibited phosphorylation of Rb and E2F1 expression. Among I. obliquus fractions, fraction 2 (fractionated by dichloromethane from EEIO) showed the same effect as EEIO treatment on cell proliferation and cell cycle-related protein levels. CONCLUSIONS: These results demonstrate that fraction 2 is the major fraction that induces $G_1$ arrest and inhibits cell proliferation, suggesting I. obliquus could be used as a natural anti-cancer ingredient in the food and/or pharmaceutical industry.

Anti-breast cancer activity of Fine Black ginseng (Panax ginseng Meyer) and ginsenoside Rg5

  • Kim, Shin-Jung;Kim, An Keun
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.125-134
    • /
    • 2015
  • Background: Black ginseng (Ginseng Radix nigra, BG) refers to the ginseng steamed for nine times and fine roots (hairy roots) of that is called fine black ginseng (FBG). It is known that the content of saponin of FBG is higher than that of BG. Therefore, in this study, we examined antitumor effects against MCF-7 breast cancer cells to target the FBG extract and its main component, ginsenoside Rg5 (Rg5). Methods: Action mechanism was determined by MTT assay, cell cycle assay and western blot analysis. Results: The results from MTT assay showed that MCF-7 cell proliferation was inhibited by Rg5 treatment for 24, 48 and 72 h in a dose-dependent manner. Rg5 at different concentrations (0, 25, 50 and $100{\mu}M$), induced cell cycle arrest in G0/G1 phase through regulation of cell cycle-related proteins in MCF-7 cells. As shown in the results from western blot analysis, Rg5 increased expression of p53, $p21^{WAF1/CIP1}$ and $p15^{INK4B}$ and decreased expression of Cyclin D1, Cyclin E2 and CDK4. Expression of apoptosiserelated proteins including Bax, PARP and Cytochrome c was also regulated by Rg5. These results indicate that Rg5 stimulated cell apoptosis and cell cycle arrest at G0/G1 phase via regulation of cell cycle-associated proteins in MCF-7 cells. Conclusion: Rg5 promotes breast cancer cell apoptosis in a multi-path manner with higher potency compared to 20(S)-ginsenoside Rg3 (Rg3) in MCF-7 (HER2/ER+) and MDA-MB-453 (HER2+/ER) human breast cancer cell lines, and this suggests that Rg5 might be an effective natural new material in improving breast cancer.

CR389, a Benzoimidazolyl Pyridinone Analog, Induces Cell Cycle Arrest and Apoptosis via p53 Activation in Human Ovarian Cancer PA-1 Cells

  • Suh, Hyewon;Choi, Ko-woon;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.418-422
    • /
    • 2015
  • In the course of screening for novel cell cycle inhibitors and apoptotic inducers, CR389, elucidated as 5-(1H-benzoimidazol-2-yl)-1H-pyridin-2-one, was generated as a new hit compound. Flow cytometric analysis and western blots of PA-1 cells treated with $60{\mu}M$ CR389 revealed an appreciable cell cycle arrest at the G2/M phase through direct inhibition of the CDK1 complex. In addition, activation of p53 via phosphorylation at Ser15 and subsequent up-regulation of p21CIP1 showed that CR389 also induces p53-dependent-p21CIP1-mediated cell cycle arrest. Furthermore, apoptotic induction in $60{\mu}M$ CR389-treated PA-1 cells is associated with the release of cytochrome c from mitochondria through up-regulation of the proapoptotic Bax protein, which results in the activation of procaspase-9 and -3, and the cleavage of poly(ADP-ribose) polymerase (PARP). Accordingly, CR389 seems to have multiple mechanisms of antiproliferative activity through p53-mediated pathways against human ovarian cancer cells. Therefore, we conclude that CR389 is a candidate therapeutic agent for the treatment of human ovarian cancer via the activation of p53.

Modulation of Cell Cycle Regulators by Sulforaphane in Human Mepatocarcinoma HepG2 Cells (HepG2 인체간암세포의 세포주기조절인자 발현에 미치는 sulforaphane의 영향)

  • Bae, Song-Ja;Kim, Gi-Young;Yoo, Young-Hyun;Choi, Byung-Tae;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1235-1242
    • /
    • 2006
  • Sulforaphane, an isothiocyanate derived from hydrolysis of glucoraphanin in broccoli and other cruciferous vegetables, was shown to induce phase II detoxification enzymes and inhibit chemically induced mammary tumors in rodents. Recently, sulforaphane is known to induce cell cycle arrest and apoptosis in human canter cells, however its molecular mechanisms are poorly understood. In tile present study, we demonstrated that sulforaphane acted to inhibit proliferation and induce morphological changes of human hepatocarcinoma HepG2 cells. Treatment of HepG2 cells with $10{\mu}M\;or\;15{\mu}M$ sulforaphane resulted in significant G2/M cell cycle arrest as determined by DNA flow cytometry. Moreover, $20{\mu}M$ sulforaphane significantly induced the population of sub-G1 cells suggesting that sulforaphane induced apoptosis. This anti-proliferative effect of sulforaphane was accompanied by a marked inhibition of ryclin A, cyclin 31 and Cdc2 protein. However, the levels of tumor suppressor p53 and Cdk inhibitor p21 mRNA and protein expression were significantly increased by sulforaphane treatment in a concentration-dependent manner. Although further studies are needed, the present work suggests that sulforaphane may be a potential rhemoprevetiveichemotherapeucc agent for the treatment of human cancer cells.

Role of Intracellular Calcium in Clotrimazole-Induced Alteration of Cell Cycle Inhibitors, p53 and p27, in HT29 Human Colon Adenocarcinoma Cells

  • Thapa, Dinesh;Kwon, Jun-Bum;Kim, Jung-Ae
    • Biomolecules & Therapeutics
    • /
    • v.16 no.1
    • /
    • pp.21-27
    • /
    • 2008
  • Clotrimazole (CLT), a potent antifungal drug, is known to inhibit tumor cell proliferation. In the present study, we examined the role of intracellular $Ca^{2+}$ in CLT-induced cell cycle arrest of colon adenocarcinoma HT29 cells. CLT inhibited growth of HT29 cells in a concentration-dependent manner, which was associated with inhibition of cell cycle progression at the G(1)-S phase transition and an increase in the expression of cell cycle inhibitor proteins p27 and p53. CLT also suppressed the $Ca^{2+}$ overload by A23187, a calcium ionophore, suggesting its role in modulation of intracellular $Ca^{2+}$ concentration in HT29 cells. The simultaneous application of CLT and A23187 with addition of $CaCl_2$ (1mM) to the medium significantly reversed CLT-induced p27 and p53 protein level increase and growth suppression. Our results suggest that CLT induces cell cycle arrest of colon adenocarcinoma HT29 cells via induction of p27 and p53, which may, at least in part, be mediated by alteration of intracellular $Ca^{2+}$ level.

The Regulation of p27Kip-1 and Bcl2 Expression Is Involved in the Decrease of Osteoclast Proliferation by A2B Adenosine Receptor Stimulation

  • Kim, Hong Sung;Lee, Na Kyung
    • Biomedical Science Letters
    • /
    • v.23 no.4
    • /
    • pp.327-332
    • /
    • 2017
  • A2B adenosine receptor (A2BAR) is known to be a regulator of bone homeostasis, but the regulatory mechanism of A2BAR on the osteoclast proliferation are poorly explored. Recently, we have shown that stimulation with BAY 60-6583, a specific agonist of A2BAR, significantly reduced macrophage-colony stimulating factor (M-CSF)-induced osteoclast proliferation by inducing cell cycle arrest at G1 phase and increasing the apoptosis of osteoclasts. The objective of this study was to investigate the regulatory mechanisms of cell cycle and apoptosis by A2BAR stimulation. The expression of A2BAR and M-CSF receptor, c-Fms, was not changed by A2BAR stimulation whereas M-CSF effectively induced c-Fms expression during osteoclast proliferation. Interestingly, A2BAR stimulation remarkably increased the expression of $p27^{Kip-1}$, a cell cycle inhibitor, but the expression of Cyclin D1 and cdk4 was not affected. In addition, while BAY 60-6583 treatment reduced the expression of Bcl2, an anti-apoptotic oncogene, it failed to regulate the expression of Bax, a pro-apoptotic marker. Taken together, these results imply that the increase of $p27^{Kip-1}$ inducing cell cycle arrest at G1 phase and the decrease of Bcl2 inducing anti-apoptotic response by A2BAR stimulation contribute to the down-regulation of osteoclast proliferation.

Sensitization of the Apoptotic Effect of ${\gamma}$-Irradiation in Genistein-pretreated CaSki Cervical Cancer Cells

  • Shin, Jang-In;Shim, Jung-Hyun;Kim, Ki-Hong;Choi, Hee-Sook;Kim, Jae-Wha;Lee, Hee-Gu;Kim, Bo-Yeon;Park, Sue-Nie;Park, Ok-Jin;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.523-531
    • /
    • 2008
  • Radiotherapy is currently applied in the treatment of human cancers. We studied whether genistein would enhance the radiosensitivity and explored its precise molecular mechanism in cervical cancer cells. After co-treatment with genistein and irradiation, the viability, cell cycle analysis, and apoptosis signaling cascades were elucidated in CaSki cells. The viability was decreased by co-treatment with genistein and irradiation compared with irradiation treatment alone. Treatment with only ${\gamma}$-irradiation led to cell cycle arrest at the $G_1$ phase. On the other hand, co-treatment with genistein and ${\gamma}$-irradiation caused a decrease in the $G_1$ phase and a concomitant increase up to 56% in the number of $G_2$ phase. In addition, co-treatment increased the expression of p53 and p21, and Cdc2-tyr-15-p, supporting the occurrence of $G_2/M$ arrest. In general, apoptosis signaling cascades were activated by the following events: release of cytochrome c, upregulation of Bax, down regulation of Bcl-2, and activation of caspase-3 and -8 in the treatment of genistein and irradiation. Apparently, co-treatment downregulated the transcripts of E6*I, E6*II, and E7. Genistein also stimulated irradiation-induced intracellular reactive oxygene, species (ROS) production, and co-treatment-induced apoptosis was inhibited by the antioxidant N-acetylcysteine, suggesting that apoptosis has occurred through the increase in ROS by genistein and ${\gamma}$-irradiation in cervical cancer cells. Gamma-irradiation increased cyclooxygenase-1 (COX-2) expression, whereas the combination with genistein and ${\gamma}$-irradiation almost completely prevented irradiation-induced COX-2 expression and $PGE_2$ production. Co-treatment with genistein and ${\gamma}$-irradiation inhibited proliferation through $G_2/M$ arrest and induced apoptosis via ROS modulation in the CaSki cancer cells.