• Title/Summary/Keyword: G1 arrest

Search Result 547, Processing Time 0.027 seconds

The Cell Cycle Dependence and Radiation-induced Apoptosis in SCK Mammary Adenocarcinoma Cell Line (SCK선암 세포주에서 방사선에 의한 Apoptosis와 세포 주기)

  • Lee Hyung Sik;Park Hong Kyu;Hur Won Joo;Seo Su Yeong;Lee Sang Hwa;Jung Min Ho;Park Heon Joo;Song Chang Won
    • Radiation Oncology Journal
    • /
    • v.16 no.2
    • /
    • pp.91-98
    • /
    • 1998
  • Purpose : The relationship between environmental PH on the radiation induced-apoptosis in SCK mammary adenocarcinoma cells and cell cycle dependence was investigated. Material and Methods : Mammary adenocarcinoma cells of A/J mice(SCK cells) in exponential growth phase were irradiated with a $l37^Cs$ irradiator at room temperature. The cells were irradiated 1 hour after the media was replaced with fresh media at a different pHs. After incubation at $37^{\circ}C$ for 0-48 h, the extent of apoptosis was determined using agarose gel electrophoresis and flow cytometry. The progression of cells through the cell cycle after irradiation in different pHs was also determined with flow cytometry. Bssults : The induction of apoptosis by irradiation in pH 6.6 medium was markedly less than that in pH 7.5 medium. When the cells were irradiated and maintained in pH 7.5 medium, the percentage of cells in $G_2/M$ phase rapidly increased to about $70\%$ at 12 h after an exposure to 120y and returned to control level by 36 h. The percentage of cells in G1 phase decreased as the percentage of cells in $G_2/M$ increased. On the other hand, in pH 6.6 medium the percentage of cells in G2/M phases gradually increased to about $45\%$ at 24 h after 12Gy irradiation and then slowly recessed and consequently, as much as $30-35\%$ of the cells were still in the Ga/M phase 48 h after irradiation. The percentage of cells in G1 phase then increased as the Ga/M arrest began to recede. The radiation-induced Ga/M arrest in PH 0.0 medium lasted markedly longer than that in pH 7.5 medium. Conclusion : Radiation-induced apoptosis in SCK tumor cells are reversely suppressed in an acidic environment. Radiation-induced Ga/M arrest is prolonged in an acidic environment indicating that the suppression of radiation-induced apoptosis and prolongation of radiation-induced Ga/M arrest in an acidic environment are related.

  • PDF

A Natural Product, Chios Gum Mastic, Induces the Death of HL-60 Cells via Apoptosis and Cell Cycle Arrest

  • Koo, Byung-Chan;Kim, Duck-Han;Kim, In-Ryoung;Kim, Gyoo-Cheon;Kwak, Hyun-Ho;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • v.36 no.1
    • /
    • pp.13-21
    • /
    • 2011
  • Chios gum mastic (CGM) is produced from Pistiacia lentiscus L var chia, which grows only on Chios Island in Greece. CGM is a kind of resin extracted from the stem and leaves, has been used for many centuries in many Mediterranean countries as a dietary supplement and folk medicine for stomach and duodenal ulcers. CGM is known to induce cell cycle arrest and apoptosis in some cancer cells. This study was undertaken to investigate the alteration of the cell cycle and induction of apoptosis following CGM treatment of HL-60 cells. The viability of the HL-60 cells was assessed using the MTT assay. Hoechst staining and DNA electrophoresis were employed to detect HL-60 cells undergoing apoptosis. Western blotting, immunocytochemistry, confocal microscopy, FACScan flow cytometry, MMP activity and proteasome activity analyses were also employed. CGM treatment of HL-60 cells was found to result in a dose- and time-dependent decrease in cell viability and apoptotic cell death. Tested HL-60 cells showed a variety of apoptotic manifestations and induced the downregulation of G1 cell cycle-related proteins. Taken collectively, our present findings demonstrate that CGM strongly induces G1 cell cycle arrest via the modulation of cell cycle-related proteins, and also apoptosis via proteasome, mitochondrial and caspase cascades in HL-60 cells. Hence, we provide evidence that a natural product, CGM could be considered as a novel therapeutic for human leukemia.

Radiation-induced Apoptosis, Necrosis and G2 Arrest in Fadu and Hep2 Cells

  • Lee Sam-Sun;Kang Beom-Hyun;Choi Hang-Moon;Jeon In-Seong;Heo Min-Suk;Choi Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.30 no.4
    • /
    • pp.275-279
    • /
    • 2000
  • Purpose: Radiation damage is produced and viable cell number is reduced. We need to know the type of cell death by the ionizing radiation and the amount and duration of cell cycle arrest. In this study, we want to identified the main cause of the cellular damage in the oral cancer cells and normal keratinocytes with clinically useful radiation dosage. Materials and Methods: Human gingival tissue specimens obtained from healthy volunteers were used for primary culture of the normal human oral keratinocytes (NHOK). Primary NHOK were prepared from separated epithelial tissue and maintained in keratinocyte growth medium containing 0.15 mM calcium and a supplementary growth factor bullet kit. Fadu and Hep-2 cell lines were obtained from KCLB. Cells were irradiated in a /sup 137/Cs γ-irradiator at the dose of 10 Gy. The dose rate was 5.38 Gy/min. The necrotic cell death was examined with Lactate Dehydrogenase (LDH) activity in the culture medium. Every 4 day after irradiation, LDH activities were read and compared control group. Cell cycle phase distribution and preG1-incidence after radiation were analyzed by flow cytometry using Propidium Iodine staining. Cell cycle analysis were carried out with a FAC Star plus flowcytometry (FACS, Becton Dickinson, USA) and DNA histograms were processed with CELLFIT software (Becton Dickinson, USA). Results: LDH activity increased in all of the experimental cells by the times. This pattern could be seen in the non-irradiated cells, and there was no difference between the non-irradiated cells and irradiated cells. We detected an induction of apoptosis after irradiation with a single dose of 10 Gy. The maximal rate of apoptosis ranged from 4.0% to 8.0% 4 days after irradiation. In all experimental cells, we detected G2/M arrest after irradiation with a single dose of 10 Gy. Yet there were differences in the number of G2/M arrested cells. The maximal rate of the G2/M ranges from 60.0% to 80.0% 24h after irradiation. There is no significant changes on the rate of the G0/G1 phase. Conclusion: Radiation sensitivity was not related with necrosis but cell cycle arrest and apoptosis. These data suggested that more arrested cell is correlated with more apoptosis.

  • PDF

Effect of Isoimperatorin on the Proliferation of Prostate Cancer Cell Line DU145 Cells

  • Kang, Ja-Hoon;Lee, Soo-Kyeon;Yim, Dong-Sool
    • Biomolecules & Therapeutics
    • /
    • v.13 no.3
    • /
    • pp.185-189
    • /
    • 2005
  • We isolated a coumarin compound, isoimperatorin ($C_{16}H_{14}O_4$ mw: 270) from Angelica koreana through silica gel column chromatography, and characterized it by NMR. Here, for the first time we observed that isoimperatorin (25, 50 and 100 ${\mu}M$) treatment for 24-72h inhibited growth and induced death in human prostate carcinoma DU145 cells. Further, in mechanistic investigation, isoimperatorin-induced cell growth inhibition was associated with a strong increase in G1 arrest in cell cycle progression, which started at 24h of the treatment. These findings suggest a novel anticancer efficacy of isoimperatorin mediated via induction of G1 arrest against hormone refractory human prostate carcinoma DU145 cells.

Effects of Ag Nanoparticle Flow Rates on the Progress of the Cell Cycle Under Continuously Flowing "Dynamic" Exposure Conditions

  • Park, Min Sun;Yoon, Tae Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.123-128
    • /
    • 2014
  • In this study, we have investigated the flow rate effects of Ag nanoparticle (NP) suspensions on the progress of the cell cycle by using a microfluidic image cytometry (${\mu}FIC$)-based approach. Compared with the conventional "static" exposure conditions, enhancements in G2 phase arrest were observed for the cells under continuously flowing "dynamic" exposure conditions. The "dynamic" exposure conditions, which mimic in vivo systems, induced an enhanced cytotoxicity by accelerating G2 phase arrest and subsequent apoptosis processes. Moreover, we have also shown that the increases in delivered NP dose due to the continuous supply of Ag NPs contributed dominantly to the enhanced cytotoxicity observed under the "dynamic" exposure conditions, while the shear stress caused by these slowly flowing fluids (i.e., flow rates of 6 and $30{\mu}L/h$) had only a minor influence on the observed enhancement in cytotoxicity.

Induction of apoptosis and $\G_1$ arrest by LJ-331, a novel nucleoside analog,in human leukemia HL-60 cells

  • Lee, Eun-Jin;Shin, Dae-Hong;Jeong, Nak-Shin;Lee, Sang-Kook
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.90.2-90.2
    • /
    • 2003
  • In a continuous effort to develop novel anticancer agents we newly synthesized and evaluated the antitumor activity of nucleoside analogues. One analogue, 4-[2-Chlor-6-(3-iodo-benzylamino)-purin-9-yl]-2,3-dihydroxy-cyclopentanecarboxylic acid methylamide (LJ-331), has been shown to exert a potent inhibition of human cancer cell growth in vitro including human lung (A549), stomach (SNU-638) and leukemia (HL-60) cancer cells. Following mechanism of action study revealed that LJ-331 induces cell cycle arrest at the G$_1$ phase in HL-60 cells and evokes apoptotic phenomena such as an increase in DNA ladder intensity and chromatin condensation by a dose-and time-dependent manner. (omitted)

  • PDF

Paclitaxel Induced Caspase-Independent Mitotic Catastrophe in Rabbit Articular Chondrocyte (Paclitaxel에 의한 관절연골 세포의 capase-비의존적 mitotic catastrophe 유도)

  • Im, Jeong-Hee;Kim, Song-Ja
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.519-527
    • /
    • 2010
  • Paclitaxel is known as a potent inhibitor of microtubule depolymerization. It leads to mitotic arrest and cell death by stabilizing the spindle in various cell types. Here, we investigated the effects of paclitaxel on the proliferation and cell death of rabbit articular chondrocytes. Paclitaxel inhibited proliferation in a dose- and time- dependent manner, determined by MTT assay in rabbit articular chondrocytes. We also established paclitaxel-induced G2/M arrest by fluorescent activated cell sorter (FACS) analysis. Paclitaxel increased expression of cyclin B, p53 and p21, while reducing expression of cdc2 and cdc25C in chondrocytes, as detected by Western blot analysis. Interestingly, paclitaxel showed the mitotic catastrophe that leads to abnormal nucleus division and cell death without DNA fragmentation through activation of caspase. Cell death by mitotic catastrophe in cells treated with paclitaxel was suppressed by inhibiting G1/S arrest with 2 mM thymidine. These results demonstrate that paclitaxel induces cell death via mitotic catastrophe without activation of casepase in rabbit articular chondrocytes.

Anti-oxidative and Anti-cancer Activities by Cell Cycle Regulation of Salsola collina Extract (솔장다리 추출물의 항산화 활성 및 세포주기조절에 의한 항암 활성 분석)

  • Oh, You Na;Jin, Soojung;Park, Hyun-Jin;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.1
    • /
    • pp.73-81
    • /
    • 2014
  • Salsola collina, also known as Russian thistle, is widely distributed in and around waste facilities, roadsides, and drought and semi-drought areas, and is used as a traditional folk remedy in Chinese medicine for the treatment of hypertension. In this study, we have evaluated the anti-oxidative and anti-cancer activities of the ethanol extract of S. collina Pall. (EESC), and the molecular mechanisms of its anti-cancer effects on human colon carcinoma HT29 cells. EESC exhibited anti-oxidative activity through DPPH radical scavenging capacity and showed cytotoxic activity in a dose-dependent manner in HT29 cells. After EESC treatment, HT29 cells altered their morphology, becoming smaller and irregular in shape. EESC also induced cell accumulation in the G2/M phase in a dose-dependent manner, accompanied by a decrease of cell population in the G1 phase. The G2/M arrest by EESC was associated with the increased expression of cyclin-dependent kinase (CDK) inhibitor p21 and Wee1 kinase, which phosphorylates, or inactivates, Cdc2. EESC treatment induced the phosphorylation of Cdc2 and Cdc25C, and inhibited cyclin A and Cdc25C protein expression. In addition, S arrest was induced by the highest concentration of EESC treatment, associated with a decrease of cyclin A and Cdk2 expression. These findings suggest that EESC may possess remarkable anti-oxidative activity and exert an anti-cancer effect in HT29 cells by cell cycle regulation.

Effect of Irradiation on Apoptosis, Cell Cycle Arrest and Calcified Nodule Formation of Rat Calvarial Osteoblast (방사선 조사가 배양된 조골세포의 apoptosis와 세포주기의 변화 및 석회화 결절 형성에 미치는 영향에 관한 연구)

  • Lee Young-Mi;Choi Hang-Moon;Heo Min-Suk;Lee Sam-Sun;Choi Soon-Chul;Park Tae-Won
    • Imaging Science in Dentistry
    • /
    • v.30 no.3
    • /
    • pp.189-198
    • /
    • 2000
  • Purpose: The study was aimed to detect the induction of apoptosis, cell cycle arrest and calcified nodule formation after irradiation on primarily cultured osteoblasts. Materials and Methods: Using rat calvarial osteoblasts, the effects of irradiation on apoptosis, cell cycle arrest, and calcified nodule formation were studied. The single irradiation of 10 and 20 Gy was done with 5.38 Gy/min dose rate using the l37Cs cell irradiator at 4th and 14th day of culture. Apoptosis induction and cell cycle arrest were assayed by the flowcytometry at 1, 2, 3, and 4 days after irradiation. The formation of calcified nodules was observed by alizarin red staining at 1, 3, 10, 14 days after irradiation at 4th day of culture, and at 1, 4, 5 days after irradiation at 14th day of culture. Results: Apoptosis was not induced by 10 or 20 Gy independent of irradiation and culture period. Irradiation did not induced G1 arrest in post-irradiated ostedblasts. After irradiation at 4th-day of culture, G2 arrest was induced but it was not statistically significant after irradiation at 14th-day of culture. In the case of irradiated cells at 4th day of culture, calcified nodules were not formed and at 14th-day of culture after irradiation, calcified nodule formation did not affected. Conclusion: Taken together, these results suggest that irradiation at the dose of 10-20 Gy would not affect apoptosis induction of osteoblasts. Cell cycle and calcified nodule formation were influenced by the level of differentiation of osteblasts.

  • PDF

Cyclin-Dependent Kinase Inhibitor 2A is a Key Regulator of Cell Cycle Arrest and Senescence in Endothelial Colony-Forming Cells in Moyamoya Disease

  • Seung Ah Choi;Youn Joo Moon;Eun Jung Koh;Ji Hoon Phi;Ji Yeoun Lee;Kyung Hyun Kim;Seung-Ki Kim
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.6
    • /
    • pp.642-651
    • /
    • 2023
  • Objective : Endothelial colony-forming cells (ECFCs) have been reported to play an important role in the pathogenesis of moyamoya disease (MMD). We have previously observed stagnant growth in MMD ECFCs with functional impairment of tubule formation. We aimed to verify the key regulators and related signaling pathways involved in the functional defects of MMD ECFCs. Methods : ECFCs were cultured from peripheral blood mononuclear cells of healthy volunteers (normal) and MMD patients. Low-density lipoproteins uptake, flow cytometry, high content screening, senescence-associated β-galactosidase, immunofluorescence, cell cycle, tubule formation, microarray, real-time quantitative polymerase chain reaction, small interfering RNA transfection, and western blot analyses were performed. Results : The acquisition of cells that can be cultured for a long time with the characteristics of late ECFCs was significantly lower in the MMD patients than the normal. Importantly, the MMD ECFCs showed decreased cellular proliferation with G1 cell cycle arrest and cellular senescence compared to the normal ECFCs. A pathway enrichment analysis demonstrated that the cell cycle pathway was the major enriched pathway, which is consistent with the results of the functional analysis of ECFCs. Among the genes associated with the cell cycle, cyclin-dependent kinase inhibitor 2A (CDKN2A) showed the highest expression in MMD ECFCs. Knockdown of CDKN2A in MMD ECFCs enhanced proliferation by reducing G1 cell cycle arrest and inhibiting senescence through the regulation of CDK4 and phospho retinoblastoma protein. Conclusion : Our study suggests that CDKN2A plays an important role in the growth retardation of MMD ECFCs by inducing cell cycle arrest and senescence.