• Title/Summary/Keyword: G.U.I.

Search Result 623, Processing Time 0.028 seconds

Phytosociological Studies on the Beech(Fagus multinervis Nakai) Forest and the Pine (Pinus parviflora S. et Z.) Forest of Ulreung Island, Korea (한국 울릉도의 너도밤나무(Fagus multinervis Nakai)림 및 섬잣나무(Pinus parviflora S. et Z.)림의 식물사회학적 연구)

  • 김성덕
    • Journal of Plant Biology
    • /
    • v.29 no.1
    • /
    • pp.53-65
    • /
    • 1986
  • The montane forests of Ulreung Island, Korea, were investigated by the ZM school method. By comparing the montane forests of this island with those of Korean Peninsula and of Japan, a new order, F a g e t a l i a m u l t i n e r v i s, a new alliance, F a l g i o n m u l t i n e r v i s, a new association, H e p a t i c o-F a g e t u m m u l t i n e r v i s and Rhododendron brachycarpum-Pinus parviflora community were recognized. The H e p a t i c o - F a g e t u m m u l t i n e r v i s was further subdivided into four subassociations; Subass. of Sasa kurilensis, Subass. of Rumohra standishii, Subass. of Rhododendron brachycarpum and Subass. of typicum. Each community was described in terms of floristic, structural and environmental features.

  • PDF

Joseon Intellectuals' Awareness in 'Gǔ(古) and Jīn(今)' and Historical Changes - Focusing on distinctions between different schools (조선 지성인들의 '고금(古今)' 인식과 역사변동 - 학파 간의 차이를 중심으로 -)

  • Choi, Young-sung
    • The Journal of Korean Philosophical History
    • /
    • no.54
    • /
    • pp.43-75
    • /
    • 2017
  • This paper is to examine how Joseon intellectuals understood $g{\check{u}}$(古) and $j{\bar{i}}n$(今) and how its history consequently changed. It is to take a macroscopic view focusing on differences of different schools. Understanding of '$g{\check{u}}$' and '$j{\bar{i}}n$' directly and indirectly affected academia, art and even politics throughout Joseon dynasty. As different scholars and schools distinctively understood $g{\check{u}}$ and $j{\bar{i}}n$, issues of tradition and creation; conservatism and progressivism and; ideal and reality were deeply discussed. Those discussions greatly and historically contributed to making changes in politics and society as well. A cultural tradition of emphasizing '$g{\check{u}}$' took a deep root in overall Joseon society. Meanwhile, understanding of '$j{\bar{i}}n$(今)' or '$x{\bar{i}}n$(新)' was required with changes of times. as When people thought the reality is confusing or corrupt, they adopted restoration(復古) which means to go back to basis as the slogan. Awareness in $g{\check{u}}$ and $j{\bar{i}}n$ served as a drive to change the society. However, they never lifted their voices for '$j{\bar{i}}n$' or '$x{\bar{i}}n$,' abandoning '$g{\check{u}}$'. Criticism on '$g{\check{u}}$' was merely for criticizing being bound by '$g{\check{u}}$,' not targeting '$g{\check{u}}$' itself. '$J{\bar{i}}n$' actually was a dependent variable of '$g{\check{u}}$.' It is a dichotomous view to consider '$g{\check{u}}$' as conservatism and '$j{\bar{i}}n$' as progressivism.

EXISTENCE OF SOLUTIONS FOR IMPULSIVE NONLINEAR DIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS

  • Selvaraj, B.;Arjunan, M. Mallika;Kavitha, V.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.3
    • /
    • pp.203-215
    • /
    • 2009
  • In this article, we study the existence and uniqueness of mild and classical solutions for a nonlinear impulsive differential equation with nonlocal conditions u'(t) = Au(t) + f(t, u(t); Tu(t); Su(t)), $0{\leq}t{\leq}T_0$, $t{\neq}t_i$, u(0) + g(u) = $u_0$, ${\Delta}u(t_i)=I_i(u(t_i))$, i = 1,2,${\ldots}$p, 0<$t_1$<$t_2$<$\cdots$<$t_p$<$T_0$, in a Banach space X, where A is the infinitesimal generator of a $C_0$ semigroup, g constitutes a nonlocal conditions, and ${\Delta}u(t_i)=u(t_i^+)-u(t_i^-)$ represents an impulsive conditions.

  • PDF

ON CONSTANT-SIGN SOLUTIONS OF A SYSTEM OF DISCRETE EQUATIONS

  • Agarwal, Ravi-P.;O'Regan, Donal;Wong, Patricia-J.Y.
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.1-37
    • /
    • 2004
  • We consider the following system of discrete equations $u_i(\kappa)\;=\;{\Sigma{N}{\ell=0}}g_i({\kappa},\;{\ell})f_i(\ell,\;u_1(\ell),\;u_2(\ell),\;{\cdots}\;,\;u_n(\ell)),\;{\kappa}\;{\in}\;\{0,\;1,\;{\cdots}\;,\;T\},\;1\;{\leq}\;i\;{\leq}\;n\;where\;T\;{\geq}\;N\;>\;0,\;1\;{\leq}i\;{\leq}\;n$. Existence criteria for single, double and multiple constant-sign solutions of the system are established. To illustrate the generality of the results obtained, we include applications to several well known boundary value problems. The above system is also extended to that on $\{0,\;1,\;{\cdots}\;\}\;u_i(\kappa)\;=\;{\Sigma{\infty}{\ell=0}}g_i({\kappa},\;{\ell})f_i(\ell,\;u_1(\ell),\;u_2(\ell),\;\cdots\;,\;u_n(\ell)),\;{\kappa}\;{\in}\;\{0,\;1,\;{\cdots}\;\},\;1\;{\leq}\;i\;{\leq}\;n$ for which the existence of constant-sign solutions is investigated.

Research on Government-Industry-University-Academy Collaboration in China

  • Yang, Yu;Xiaoyan, Lin
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2006.11a
    • /
    • pp.93-100
    • /
    • 2006
  • This paper deals with Government-Industry-University-Academy (G-I-U-A) collaboration mechanism in China from the perspective of National Innovation Systems (NIS) theory. The focus of the article is on the analytical and methodological issues arising from the G-I-U-A collaboration. How the O-I-U-A collaboration changes in China is identified here. After some review of academic research, the paper reveals the key roles which Government, Industry, University and Academy should play. According to the government behavior in innovation activities, a G-I-U-A collaboration mechanism with Chinese characteristics is provided in the paper.

  • PDF

ON $\eta$K-CONFORMAL KILLING TENSOR IN COSYMPLECTIC MANIFOLD WITH VANISHING COSYMPLECTIC BOCHNER CURVATURE TENSOR$^*$

  • Jun, Jae-Bok;Kim, Un-Kyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.25-34
    • /
    • 1995
  • S. Tachibana [10] has defined a confornal Killing tensor in a n-dimensional Riemannian manifold M by a skew symmetric tensor $u_[ji}$ satisfying the equation $$ \nabla_k u_{ji} + \nabla_j u_{ki} = 2\rho_i g_{kj} - \rho_j g_{ki} - \rho_k g_{ji}, $$ where $g_{ji}$ is the metric tensor of M, $\nabla$ denotes the covariant derivative with respect to $g_{ji}$ and $\rho_i$ is a associated covector field of $u_{ji}$. In here, a covector field means a 1-form.

  • PDF

THE GEODETIC NUMBER OF A GRAPH

  • Kim, Byung-Kee
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.525-532
    • /
    • 2004
  • For two vertices u and v of an oriented graph D, the set I(u, v) consists of all vertices lying on a u-v geodesic or v-u geodesic in D. If S is a set of vertices of D, then I(S) is the union of all sets 1(u, v) for vertices u and v in S. The geodetic number g(D) is the minimum cardinality among the subsets S of V(D) with I(S) = V(D). In this paper, we give a partial answer for the conjecture by G. Chartrand and P. Zhang and present some results on orient able geodetic number.

ASYMPTOTIC NORMALITY OF WAVELET ESTIMATOR OF REGRESSION FUNCTION UNDER NA ASSUMPTIONS

  • Liang, Han-Ying;Qi, Yan-Yan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.247-257
    • /
    • 2007
  • Consider the heteroscedastic regression model $Y_i=g(x_i)+{\sigma}_i\;{\epsilon}_i=(1{\leq}i{\leq}n)$, where ${\sigma}^2_i=f(u_i)$, the design points $(x_i,\;u_i)$ are known and nonrandom, and g and f are unknown functions defined on closed interval [0, 1]. Under the random errors $\epsilon_i$ form a sequence of NA random variables, we study the asymptotic normality of wavelet estimators of g when f is a known or unknown function.

LINEAR EDGE GEODETIC GRAPHS

  • Santhakumaran, A.P.;Jebaraj, T.;Ullas Chandran, S.V.
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.871-882
    • /
    • 2012
  • For a connected graph G of order $n$, an ordered set $S=\{u_1,u_2,{\cdots},u_k\}$ of vertices in G is a linear edge geodetic set of G if for each edge $e=xy$ in G, there exists an index $i$, $1{\leq}i$ < $k$ such that e lie on a $u_i-u_{i+1}$ geodesic in G, and a linear edge geodetic set of minimum cardinality is the linear edge geodetic number $leg(G)$ of G. A graph G is called a linear edge geodetic graph if it has a linear edge geodetic set. The linear edge geodetic numbers of certain standard graphs are obtained. Let $g_l(G)$ and $eg(G)$ denote the linear geodetic number and the edge geodetic number, respectively of a graph G. For positive integers $r$, $d$ and $k{\geq}2$ with $r$ < $d{\leq}2r$, there exists a connected linear edge geodetic graph with rad $G=r$, diam $G=d$, and $g_l(G)=leg(G)=k$. It is shown that for each pair $a$, $b$ of integers with $3{\leq}a{\leq}b$, there is a connected linear edge geodetic graph G with $eg(G)=a$ and $leg(G)=b$.

A Study on the Sorption Behavior of U(VI) ion by Arsenazo I-XAD-2 Chelating Resin (Arsenazo I-XAD-2 킬레이트수지를 이용한 U(VI) 이온의 분리 및 농축에 관한 연구)

  • Lee, Chang-Hun;Lee, Si-Eun;Lim, Jae-Hee;Eom, Tae-Yoon;Kim, In-Whan;Kang, Chang-Hee;Lee, Won
    • Analytical Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.489-499
    • /
    • 1993
  • Some sorption behaviors of U(VI) ion on Arsenazo I-XAD-2 chelating resin were investigated. This chelating resin was synthesized by the diazonium coupling of Amberlite XAD-2 resin with Arsenzo I chelating reagent and characterized by elementary analysis method and IR spectrometry. The optimum conditions for the sorption of U(VI) ion were examined with respect to pH, U(VI) ion concentration and shaking time. Total sorption capacity of this chelating resin on U(VI) ion was 0.39mmol U(VI)/g resin in the pH range of 4.0~4.5. This chelating resin was showed increased sorption capacity on the increased pH value. It was confirmed that sorption mechanism of U(VI) ion on the Arsenazo I-XAD-2 chelating resin was competition reacting between U(VI) ion and $H^+$ ion. Breakthrough volume and overall capacity of U(VI) ion measured by column were was 600 ml and 0.38 mmol U(VI)/g resin, respectively. The desorption of U(VI) ion was showed recovery of 90~96% using 3M $HNO_3$ and 3M $Na_2CO_3$ as a desorption solution. The separation and concentration of U(VI) ion from natural water and sea water was performed successfully by Arsenazo I-XAD-2 chelating resin.

  • PDF