• Title/Summary/Keyword: G-power

Search Result 4,980, Processing Time 0.033 seconds

Extracting (-)-hydroxycitric Acid from Dried Rinds of Garcinia oblongifolia Champ. ex Benth by Using Microwave

  • Dang, Quang Vinh;Dao, Hung Cuong;Nguyen, Thuong
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.6
    • /
    • pp.983-987
    • /
    • 2011
  • Surveys on the process of extracting acid from dried rinds of Garcinia oblongifolia Champ. ex Benth (G. oblongifolia) using microwave in terms of time, machine power and solid/liquid rate, have resulted in such findings as: the best time allocation for extracting is 25 minutes; machine power works best at level 2 (microwave power is 400 W); suitable rate of solid/liquid is 0.071 (approximately 150 mL solvent per 10 g of sample). The total amounts acid and (-)-hydroxycitric acid extracted from 100 g dried rinds of G. oblongifolia are 18.592 g and 10.137g respectively. This is the first finding on extraction of (-)-HCA from dried rinds of G. oblongifolia using microwave.

Experimental Evaluation on Power Loss of Coreless Double-side Permanent Magnet Synchronous Motor/Generator Applied to Flywheel Energy Storage System

  • Kim, Jeong-Man;Choi, Jang-Young;Lee, Sung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.256-261
    • /
    • 2017
  • This paper deals with the experimental evaluation on power loss of a double-side permanent magnet synchronous motor/generator (DPMSM/G) applied to a flywheel energy storage system (FESS). Power loss is one of the most important problems in the FESS, which supplies the electrical energy from the mechanical rotation energy, because the power loss decreases the efficiency of energy storage and conversion of capability FESS. In this paper, the power losses of coreless DPMSM/G are separated by the mechanical and rotor eddy current losses in each operating mode. Moreover, the rotor eddy current loss is calculated by the 3-D finite element analysis (FEA) method. The analysis result is validated by separating the power loss as electromagnetic loss and mechanical loss by a spin up/down test.

A Study on The Steam Generator Level Control for Nuclear Power Plant (원자력발전소 증기발생기 수위 제어에 관한 연구)

  • Moon, Byung-Heuee;Choi, Hong-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.172-174
    • /
    • 1995
  • About a half of Electric power is generated by nuclear power plants in korea. So, the stable operation of nuclear power plant is very important for suppling the essential national electric power. A S/G(Steam Generator) level control is the most difficult system in PWR(Pressurized Water Reactor) nuclear power plant. Because of the non-linear and the non-nominal response of S/G level control, it Is very difficult to control the level by automatic mode or manual mode. The goal of this study is to establish and verify a advanced control algorithm by analyzing, modelling, stability calculation, controller parameter calculation, simulation for S/G level control system.

  • PDF

Output Enhancement of Rhodamine 6G Dye Laser by Rhodamine 560 Energy Transfer Dye (Rhodamine 560을 이용한 rhodamine 6G 색소 레이저의 출력 증가)

  • 장원권;이민희
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.266-271
    • /
    • 1994
  • The output power and the energy of Rh-6G dye laser were enhanced by the mixture of Rh-560 dye whose fluorescence spectrum was coincident with the absorption spectrum of Rh-6G. The argon filled coaxial flashlamp used for pulsed pumping and argon laser for CW pumping. The concentration of Rh-6G dye was optimized in each pumping method before Rh-560 dye was mixed in Rh-6G dye solution. In the coaxial flash lamp pumped Rh-6G laser the output energy was increased about 30% when Rh-560 was mixed at 1% of Rh-6G concentration. In the case of argon laser pumping with multiline, the output power was increased 18% at the concentration of 2.5%. In the single line laser pumping, the output power was enhanced more efficiently. The power enhancements were 72% and 88% when the pumping wavelengths were 488 nm and 514.5 nm respectively. ively.

  • PDF

Field-Measurement-Based Received Power Analysis for Directional Beamforming Millimeter-Wave Systems: Effects of Beamwidth and Beam Misalignment

  • Lee, Juyul;Kim, Myung-Don;Park, Jae-Joon;Chong, Young Jun
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.26-38
    • /
    • 2018
  • To overcome considerable path loss in millimeter-wave propagation, high-gain directional beamforming is considered to be a key enabling technology for outdoor 5G mobile networks. Associated with beamforming, this paper investigates propagation power loss characteristics in two aspects. The first is beamwidth effects. Owing to the multipath receiving nature of mobile environments, it is expected that a narrower beamwidth antenna will capture fewer multipath signals, while increasing directivity gain. If we normalize the directivity gain, this narrow-beamwidth reception incurs an additional power loss compared to omnidirectional-antenna power reception. With measurement data collected in an urban area at 28 GHz and 38 GHz, we illustrate the amount of these additional propagation losses as a function of the half-power beamwidth. Secondly, we investigate power losses due to steering beam misalignment, as well as the measurement data. The results show that a small angle misalignment can cause a large power loss. Considering that most standard documents provide omnidirectional antenna path loss characteristics, these results are expected to contribute to mmWave mobile system designs.

Optimal Design of Urban MICROGRID using Economical Analysis Program (경제성분석 프로그램을 이용한 도심형 마이크로그리드 최적 설계)

  • Seung-Duck, Yu;SungWoo, Yim;Youseok, Lim;SungWook, Hwang;JuHak, Lee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.69-72
    • /
    • 2022
  • This paper actually investigates the load on major large-scale buildings in the downtown area, examines the economic feasibility of installing PV and ESS in a microgrid target building, and evaluates whether an electric vehicle capable of V2G through two buildings is effective as an economical analysis program (HOMER) was analyzed using. It is economical to install a mixture of ESS rather than using the whole PV, and it is shown that if there is an electric vehicle using the V2G function of EV, there is an economic effect to replace the PV. So that Incentives and policies are needed to replace a large area of PV and utilize the existing parking lot to lead EV as a resource of the microgrid. Currently, P2X technology that stores power as ESS or converts it to other energy to control when surplus renewable energy occurs in large-capacity solar power plants and wind farms, etc. This is being applied, and efforts are being made to maintain the stability of the system through the management of surplus power, such as replacing thermal energy through a heat pump. Due to the increase in electric vehicles, which were recognized only as a means of transportation, technologies for using electric vehicles are developing. Accordingly, existing gas stations do not only supply traditional chemical fuels, but electricity, and super stations that also produce electricity have appeared. Super Station is a new concept power plant that can produce and store electricity using solar power, ESS, V2G, and P2G. To take advantage of this, research on an urban microgrid that forms an independent system by tying a large building and several buildings together and supplies power through a super station around the microgrid is in full swing.

High Efficiency Power Amplifier applied to 5G Systems (5G 시스템에 적용되는 고효율 전력증폭기)

  • Young Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.2
    • /
    • pp.197-202
    • /
    • 2023
  • This paper presents the design method and electrical characteristics of a high-efficiency power amplifier for a 50 Watts class repeater applied to a 5G system and used in in-building, subway, and tunnel. GaN was used for the termination transistor of the power amplifier designed here, and intermodulation signals were removed using DPD to satisfy linearity. In addition, in order to handle various requirements such as amplifier gain control and alarm processing required in the 5G system, the microprocessor is designed to exist inside the power amplifier. The amplifier manufactured to confirm the electrical performance of the power amplifier satisfying these conditions satisfied 46.5 dBm and the overall efficiency of the amplifier was 37%, and it was confirmed that it satisfied various alarm conditions and electrical characteristics required by telecommunication companies.

Analysis of the Characteristics of the Tidal Current Power Generation System Using Motor-Generator Set (전동기-발전기 실험장치(Motor-Generator Set)를 이용한 조류발전 시스템의 특성 분석)

  • An, Won-Young;Lim, Hyung-Tack;Lee, Seok-Hyun;Kim, Gun-Su;Jo, Chul-Hee
    • New & Renewable Energy
    • /
    • v.9 no.4
    • /
    • pp.19-24
    • /
    • 2013
  • In order to analyze the characteristics of tidal current power generation system, we measured output power in M-G Set (Motor-Generator Set) and MATLAB/Simulink. We installed M-G Set (Motor-Generator Set) and did a simulation using MATLAB/Smulink. The simulation consisted of the tidal current turbine, PMSG, converter, and three-phase PWM inverter. Also, the speed control of the generator was performed using machine side converter. And we measured output voltage, current, power of the generator and the output power of three-phase PWM inverter.

A Study of the Performance Prediction Models of Mobile Graphics Processing Units

  • Kim, Cheong Ghil
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.123-128
    • /
    • 2019
  • Currently mobile services are on the verge of full commercialization ahead of 5G mobile communication (5G). The first goal could be to preempt the 5G market through realistic media services utilizing VR (Virtual Reality) and AR (Augmented Reality) technologies that users can most easily experience. Basically this movement is based on the advanced development of smart devices and high quality graphics processing computing power of mobile application processors. Accordingly, the importance of mobile GPUs is emerging and the most concern issue becomes a model for predicting the power and performance for smooth operation of high quality mobile contents. In many cases, the performance of mobile GPUs has been introduced in terms of power consumption of mobile GPUs using dynamic voltage and frequency scaling and throttling functions for power consumption and heat management. This paper introduces several studies of mobile GPU performance prediction model with user-friendly methods not like conventional power centric performance prediction models.

Antioxidant Activity and Total Phenolic Content of Callistemon citrinus Extracts

  • Park, Young-Ki;Lee, Wi-Young;Park, So-Young;Ahn, Jin-Kwon;Han, Mu-Seok
    • Food Science and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.212-215
    • /
    • 2005
  • Ethanol crude extracts of wood, bark, leaf, and fruit of Callistenwn citrinus were compared for their antioxidant activities based on DPPH (1, 1-diphenyl-2-picrylhydrazyl) radical-scavenging activity and reducing power. Bark extract showed the most potent radical-scavenging activity and reducing power, showing 94.1 and 0.64% at 25 and $100\;{\mu}g/mL$, respectively. Total phenolic content of the bark extracts (275.0 mg GAE/g) was higher than those of others. Further fractionation of the bark extract using hexane, $CH_2Cl_2$, and EtOAc showed EtOAc fraction had the highest antioxidant activity ($IC_{50}\;6.7\;{\mu}g/mL$) and reducing power (0.82 at $100\;{\mu}g/mL$), with total phenolic content of 611.1 mg GAE/g. Total phenolic contents correlated with antioxidant activity ($R^2\;=\;0.7061$) and reducing power ($R^2\;=\;0.7399$).