• Title/Summary/Keyword: G-power

Search Result 4,956, Processing Time 0.037 seconds

Design of a KaBand Half-Height Waveguide Power Combiner (Ka-Band용 Half-Height Waveguide 전력 합성기 설계)

  • 빅필준;최재훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1218-1224
    • /
    • 2000
  • A half-height waveguide power combiner is designed and analyzed for Ka-band satellite application. The branch line directional coupler is utilized as a power combiner to achieve high port-to-port isolation and low insertion loss. The half height waveguide is adopted to reduce the volume and mass of a power combiner. In this paper a half height waveguide power combiner is designed and analyzed by FDTD and its performance is compared with that of a full-height waveguide power combiner. The designed half-height combiner having optimum order is manufactured and tested. The measurement shows that the designed half-height power combiner satisfies all the performance requirements (insertion loss less than 0.3 dB, reflection loss more than 20dB, port to port isolation more than 20 dB, and port to port phase difference within 5$^{\circ}$) in the satellite communication frequency band of 20.255 GHz to 21.255 GHz.

  • PDF

Improved Road light Design using Ray-tracing method (광투사 방법을 이용한 가로등 디자인 개선)

  • Choi, Dae-Seub;Jung, Chan-Oong;Park, Sung-Tae;Hwang, Min-Young;Kim, Jae-Youn
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.327-328
    • /
    • 2008
  • In this study, it was studied about the improved road light design for drivers and pedestrians using ray- or reverse ray-tracing method. Many of conventional road lights are not suitable for drivers and pedestrians because it has some serious problems such as glare effect or randomicity of illuminated areas. It was oriented from customary design method which was pointed at simple target such as luminance or electrical power. But it was not truth any more that the high luminance or electrical power consumption mean more bright and good road light. We studied ray-tracing method for road light reflector design to get the several goals. It means that good road light has easy for drivers and pedestrians eyes and illuminating objects on the road clearly. So, we set the design targets such as uniformity on the road area per one road light, shading angles and continuous luminance uniformity on the long distance road. We designed ideal road light conditions using ray-tracing method. We set the height of drivers and pedestrians eyes and calculated design guideline to make above design targets. Then we designed road light reflector using reverse ray-tracing method. And we achieved same luminance on the road almost half power consumption because we reduced loss of light. We achieved ideal design guide as 75 degrees of shading angles and 0.5 of luminance uniformity on the road area. Finally, we suggested reflector design for 250 watts power consumption CDM light source.

  • PDF

Evaluation of power density in microbial fuel cells using expanded graphite/carbon nanotube (CNT) composite cathode and CNT anode (팽창흑연·소나노튜브 복합 음극과 탄소나노튜브 양극으로 이루어진 미생물 연료전지의 전력수율 평가)

  • Han, Sun-Kee;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.4
    • /
    • pp.503-509
    • /
    • 2013
  • Electrochemical redox capacity of a microbial fuel cell (MFC) electrode is an important factor in the power density. This study was conducted to investigate the redox capacity of surface modified anode and cathode electrodes by measuring their conductivities. An anode electrode was modified with nitric acid and a cathode electrode was modified with heat treatment. The anode electrode modified with 20 % of the nitric acid concentration showed the highest conductivity of $6.2{\mu}S/cm/g$ and the maximum power density of $306.0mW/m^2$ when used in a MFC. The cathode electrode modified at $472^{\circ}C$ for 18 min showed the highest conductivity of $5.2{\mu}S/cm/g$ and the maximum power density of $276.20mW/m^2$ when used in a MFC. On the other hand, an MFC using both the electrodes showed the highest maximum power density of $408.2mW/m^2$. Meanwhile, a control MFC without modified electrodes generated very small voltage (0.014 mV), so the power density could not be measured.

Multi-Objective Optimal Predictive Energy Management Control of Grid-Connected Residential Wind-PV-FC-Battery Powered Charging Station for Plug-in Electric Vehicle

  • El-naggar, Mohammed Fathy;Elgammal, Adel Abdelaziz Abdelghany
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.742-751
    • /
    • 2018
  • Electric vehicles (EV) are emerging as the future transportation vehicle reflecting their potential safe environmental advantages. Vehicle to Grid (V2G) system describes the hybrid system in which the EV can communicate with the utility grid and the energy flows with insignificant effect between the utility grid and the EV. The paper presents an optimal power control and energy management strategy for Plug-In Electric Vehicle (PEV) charging stations using Wind-PV-FC-Battery renewable energy sources. The energy management optimization is structured and solved using Multi-Objective Particle Swarm Optimization (MOPSO) to determine and distribute at each time step the charging power among all accessible vehicles. The Model-Based Predictive (MPC) control strategy is used to plan PEV charging energy to increase the utilization of the wind, the FC and solar energy, decrease power taken from the power grid, and fulfil the charging power requirement of all vehicles. Desired features for EV battery chargers such as the near unity power factor with negligible harmonics for the ac source, well-regulated charging current for the battery, maximum output power, high efficiency, and high reliability are fully confirmed by the proposed solution.

Spatial Distribution of Fine Roots in Quercus mongolica and Quercus acutissima Stands (신갈나무와 상수리나무 숲에서 細根의 空間分布)

  • Kwak, Young-Se;Kim, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.17 no.2
    • /
    • pp.113-119
    • /
    • 1994
  • Vertical and horizontal distribution and seasonal changes of fine roots as well as inorganic nitrogen content in soil were determined in Quercus mongolica and Quercus acutissima stands in Mt. Taemosan, Seoul. The vertical distribution of fine rooth phytomass showed a power-functional decrease as descending soil depth. Fine root phytomass was 170 g $DM/m^2$(46%) and 225 g $DM/m^2$(47%) in top soil of 5 cm depth, and 370 g $DM/m^2$ and 480 g $DM/m^2$ from soil surface to 50 cm depth in Q. mongolica and Q. acutissima stands, respectively. Fine roots in relation to the distance from the nearest tree were evenly distributed horizontally in both stands. Fine roots phytomass in top soil of 5 cm depth reached a peak in June, and thereafter decreased gradually in both stands. Patterns of seasonal changes in fine root phytomass were closely related to inorganic nitrogen and moisture content.

  • PDF

Modeling of Nuclear Power Plant S/G Downcomer Level using GA and Levenberg-Marquardt Algorithm (유전자 알고리즘과 Levenberg-Marquardt 알고리즘을 이용한 원전 증기발생기 수위 거동 모텔링)

  • Park, Chang-Hwan;Lee, Sang-Kyung;Lee, Un-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.204-208
    • /
    • 2001
  • In this paper, we induce the linear transfer function of Downcomer water level of NPP(Nuclear Power Plant) Steam Generator using Genetic Algorithm and Levenberg-Marquardt Algorithm. The characteristic of NPP S/G mechanism is so high-non-linear that it is hard to achieve mathematical expression. So we use non-mathematical Algorithms to get the model function of NPP S/G water level. S/G level controller would be designed with this transfer function as the plant.

  • PDF

Stability Analysis Using G-Parameters of Converters Constituting DC Microgrid and Stability Enhancement Through Virtual Impedance (G-parameter를 이용한 직류 마이크로그리드의 컨버터 상호 안정도 분석 및 가상 임피던스를 이용한 안정도 향상)

  • Lee, Jae-Suk;Lee, Gi-Young;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.321-327
    • /
    • 2018
  • DC microgrid system composed of multiple converters has a tendency to make the system unstable due to the interaction of converters. To solve this problem, in this paper, the interaction between cascaded converters with LC input filter is analyzed with impedance modeling using g-parameter. The input impedance and the output impedance of the system can be obtained through this technique. The stability of the system can be determined by applying Middlebrook's stability criterion to the impedance. Virtual impedance is added to the controller to enhance stability. The validity of the analysis is verified by the result of several simulations and experiments.

A Study on Validity of 120 [Hz] System Power System (120[Hz]방식 전력시스템의 타당성에 관한 연구)

  • Lee, Jung-Hwan;Le, Tuan-Vu;Yang, Ji-Hoon;Hong, Seong-Mun;Park, Seong-Mi;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.312-313
    • /
    • 2017
  • 전력계통 주파수를 증대시키면 변압기를 비롯하여 전력변환기의 사이즈는 감소하나 부하에 따른 선로전압 강하가 크게 나타난다. 전력계통의 주파수는 전력전송이 이루어지는 거리에 따라 최적의 주파수로 운용한다면 전체시스템의 구성단가를 낮출 수 있다. 해외에서는 장거리전송을 위해 20[Hz] 전력전송에 대한 연구가 활발히 연구되고 있다. 항공모함과 같은 단거리 전력전송에서는 400[Hz] 전력전송을 사용하고 있다. 본 논문은 배전시스템의 주파수설정에 따른 변압기 및 전력변환기영역에서 장단점을 비교하여 경제성을 분석하여 마이크리드 시스템에 따라 그 적용 타당성을 연구하였다.

  • PDF