• Title/Summary/Keyword: G-L contactor

Search Result 18, Processing Time 0.025 seconds

Production of Bacterial Cellulose by Gluconacetobacter sp. RKY5 in a Rotary Biofilm Contactor

  • Kim, Yong-Jun;Wee, Young-Jung;Ryu, Hwa-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.348-352
    • /
    • 2005
  • In this study, fermentation using a rotary biofilm contactor was conducted to improve bacterial cellulose production. We investigated the optimal fermentation conditions by using a newly isolated Gluconacetobacter sp. RKY5 in the rotary biofilm contactor. The optimal total area of discs was found to be 1,769 $cm^2$ at which bacterial cellulose and cell concentration was obtained to 5.52 g/L and 4.98 g/L, respectively. In case of aeration experiment, when the aeration rate was 1.25 vvm, the maximal bacterial cellulose (5.67 g/L) was obtained and cell concentration was 5.25 g/L.

  • PDF

Propionibacterium acidipropionici를 이용한 유기산의 대량생산공정과 선별적 농축에 관한 연구

  • Kim, Dae-Sik;Choe, Cheol-Ho;Lee, Yeong-Mu;Lee, Ui-Sang
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.237-240
    • /
    • 2000
  • Organic acids which were produced from biomass wastes streams by cell-recycle fermentation using Propionibacterium acidipropionici ATCC 4965 were extracted by Membrane Contactor using TOA/MIBK system. Maximum productivity was 3.32g organic acid/L/hr at the dilution rate of 0.2/hr in the results of continuous fermentation. The diluted organic acids in the fermenter were selectively separated by Membrane Contactor extraction using 30%(w/w) trioctylamine(TOA) dissolved in methylisobutylketone(MIBK). The flow rate of aqueous phase is 200ml/min and that of extraction phase is 100ml/min. The degree of Acetic acid and Propionic acid extraction from fermentation broth was reached 56.25%, 72.41% respectively.

  • PDF

Effect of Membrane Material and Absorbent Type on $SO_2$ Removal Using Microporous Hollow-fiber Membrane G-L Contactors (다공성 중공사막 기액 접촉기틀 이용한 $SO_2$ 제거에서 막재질과 흡수제의 영향)

  • Song Hee-Ouel;Kim In-Won;Park Hyun-Hee;Lim Chun-Won;Jo Hang-Dae;Lee Hyung-Keun
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.2 s.31
    • /
    • pp.14-21
    • /
    • 2006
  • An experimental apparatus for the removal of $SO_2$ gas using microporous hollow-fiber membrane G-L contactors was setup. Various performance experiments were carried out with commercial membrane modules and the membrane modules made by KIER. The $SO_2$ removal efficiency was outstanding. When the hollow-fiber membrane was used for the removal of $SO_2$, the selection of absorbers and additives, membrane material, operating conditions of membrane manufacture were significant variables to develop optimal G-L contactors. More experiment works will be done for the development of compact, cost-effective and better G-L contactors.

  • PDF

Preparation of PVDF Hollow Fiber Membrane and Absorption of SO2 from Flue Gas Using Bench Scale Gas-Liquid Contactor (PVDF 중공사막 제조 및 벤치규모 기-액 접촉기를 이용한 SO2 흡수특성)

  • Park, Hyun-Hee;Jo, Hang-Dae;Kim, In-Won;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.521-528
    • /
    • 2008
  • The micro-porous asymmetric PVDF hollow fiber membranes for gas-liquid contactor were prepared by the dry-jet wet phase inversion process and the characteristics of hollow fiber membranes were evaluated by the gas permeation method and scanning electron microscope. The chemical absorbent for removal of $SO_2$ gas was sodium hydroxide at bench scale hollow fiber membrane contactor. The experiments were performed in a counter-current mode of operation with gas in the shell side and liquid in the fiber lumen of the module to examine the effect of various operating variables such as concentration of absorbent, gas flow rate, L/G ratio and concentration of inlet $SO_2$ gas on the $SO_2$ removal efficiency using PVDF hollow fiber membrane contactor. Membrane mass transfer coefficient($k_m$) was calculated by mathematical modeling. The volumetric overall mass transfer coefficient increased with increasing the concentration of absorbent and L/G ratio. The increase of the absorbent concentration and L/G ratio not only provides more sufficient alkalinity but also decreases liquid phase resistance. The volumetric overall mass transfer coefficient increased with increasing gas flow rate due to decreasing the gas phase resistance.

Production of fumaric acid with biofilm contactor by Rhizopus oryzae KCTC 6946

  • Kim, Jin-Nam;Wi, Yeong-Jung;Yun, Jong-Seon;Ryu, Hwa-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.243-246
    • /
    • 2002
  • In this study, biological production of fumaric acid by Rhizopus oryzae KCTC 6946 using rotary biofilm contactor was investigated. In study of neutralizing agent on fumaric acid production, $Na_2CO_3$ was more effective than NaOH. After 24 hr of incubation with a rotating speed of 10 rpm at $35^{\circ}C$, biofilm was grown on and around the surface of the disks. The yield and volumetric productivity of rotary biofilm contactor were 33.8% and 0.595 g/L${\cdot}$h, respectively, with the optimum effective disk surface area of 1,583 $cm^2/L$.

  • PDF

Effects of Rotational Speed and Hydraulic Residence Time on the Ammonia Removal of a Rotating Biological Contactor (RBC) (회전속도와 수리학적 체류시간이 회전원판식(Rotating Biological Contactor;RBC) 여과조의 암모니아 제거에 미치는 영향)

  • 오승용;조재윤;김종만
    • Journal of Aquaculture
    • /
    • v.16 no.3
    • /
    • pp.142-150
    • /
    • 2003
  • Performance of a biological filter, the rotating biological contactor (RBC), is affected by rotational speed and hydraulic residence time (HRT). A RBC with a disc diameter of 62 cm, total surface area of 48.28 $m^2$, volume of 0.34 ㎥, and submergence ratio of 35.4% was tested for the combinations of five rotational speeds (1, 2, 3, 4 & 5 rpm) and three HRT (0.5, 1.0 & 2.0 hr) to find out the maximum removal efficiencies of total ammonia nitrogen (TAN) and nitrite nitrogen of a simulated recirculating aquaculture system. Ammonia loading rate in the system was 25 g of TAN/ ㎥. day. Removal efficiencies were checked when TAN concentrations in the system stabilized for 3 days in each treatment. The concentration of TAN in the system decreased with increasing rotational speed of the RBC up to 4 rpm in all HRT (P<0.05). At the rotational speed of 5 rpm, the efficiencies decreased in all HRT (P<0.05). When the rotational speeds were 1, 2, 3, 4, and 5 rpm, TAN concentrations in the system were 1.35, 0.94, 0.69, 0.66, and 0.76 mg/L at the 0.5 hr HRT, 2.86, 1.18, 0.96, 0.87, and 1.11 mg/L at the 1.0 hr HRT, and 5.30, 2.44, 1.99, 1.77, and 2.01 mg/L at the 2.0 hr HRT, respectively. The TAN removal efficiencies of the RBC at the rotational speeds of 1, 2, 3, 4, and 5 rpm were 32.9, 49.5, 65.1, 72.9, and 62.9% in 0.5 hr HRT,33.1, 74.1, 87.1, 95.8, and 78.5% in 1.0 hr HRT, and 35.5, 76.7, 89.6, 97.0, and 85.5% in 2.0 hr HRT, respectively. TAN removal efficiency of RBC per pass increased with increasing HRT. However, TAN concentration in the system also increased. The best operating condition among the treatments was obtained at the treatment of 0.5 hr HRT and 4 rpm (P<0.05). The TAN concentration was 0.66 mg/L. Concentrations of nitrite nitrogen (NO$_2$$^{[-10]}$ -N) in the system decreased with increasing rotational speed in all HRT while that in the system increased with increasing HRT in all rotational speeds. The ranges of NO$_2$$^{[-10]}$ -N concentrations at HRT of 0.5, 1.0, and 2.0 hr in the system were 0.26~0.32, 0.31~0.56, and 0.43~l.45 mg/L, respectively. The ranges of daily removal rates of TAN in this system were 20.03~23.0 g TAN/㎥ㆍday and those of nitrite nitrogen were 19.65~30.25 g NO$_2$$^{[-10]}$ -N/㎥ㆍday.

Performance of Rotating Biological Contactor (RBC) under Different Hydraulic Loading Rates and Rotational Speeds on Ammonia Removal in a Recirculating System

  • Son Maeng Hyun;Jeon Im Gi;Jo Jae-Yoon;Moon HaeYoung
    • Fisheries and Aquatic Sciences
    • /
    • v.2 no.1
    • /
    • pp.52-57
    • /
    • 1999
  • Air-drived rotating biological contactor (RBC) system, which is effective method in filtering performance, was tested for the nitrification capacity in a recirculating system. At ammonia concentrations between 0.029 and 0.528 mg/l, the effect of ammonia loading rate on ammonia removal rate at three different hydraulic loading rates could be defined by the following first­order regression models: Hydraulic loading rate of $14.8 m^3/m^3/day:\;y=39.2\times+3.4 (r^2=0.9137)$, Hydraulic loading rate of $26.5 m^3/m^3/day: y=53.3\times+4.0 (r^2=0.8686)$, Hydraulic loading rate of $37.3 m^3/m^3/day: y=58.4\times+4.2 (r^2=0.7755)$, where, $\times$ is ammonia loading rate (mg/l), y is ammonia removal rate $(g/m^3/day)$, The equations showed the optimal ammonia removal rate at the hydraulic loading rate of $26.5m^3/m^3/day$. Below the ammonia concentration of 2.72 mg/l, first-order regression models between ammonia loading rate and ammonia removal rate at three different rates of speed are defined as follows: Rotational speed of $0.75 rpm: y=28.5\times+4.7 (r^2=0.9143)$, Rotational speed of $1.0 rpm: y=33.6\times+8.4 (r^2=0.9534)$, Rotational speed of $2.0 rpm: y=28.9\times+3.6 (r^2=0.9488)$, where, x is ammonia loading rate (mg/l), y is ammonia removal rate $(g/m^3day)$. The equations show the ammonia removal rate at the rotational speed of 1.0 rpm is significantly higher than that at the rotational speed of either 0.75 rpm or 2.0 rpm (P<0.05).

  • PDF

High Strength Slaughter Wastewater Treatment in a Novel Combined System of Hybrid-Rotating Biological Contactor and Biological Aerated Filter (Hybrid-RBC와 BAF의 조합공정을 이용한 고농도 도축폐수의 처리 특성)

  • Jung, Chan-Il;Ahn, Jo-Hwan;Bae, Woo-Keun;Kim, Seung-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.77-84
    • /
    • 2011
  • This study was conducted to develop a novel combined system of a hybrid rotating biological contactor (RBC) process that was composed of an attached- and suspended- biomass reactor, followed by a settler and a biological aerated filter (BAF) column to treat a high strength slaughter wastewater. Long term influences of organic and nitrogen loading rates were investigated to see how the combined system worked in terms of the removal efficiency. A synthetic wastewater containing a pork cutlet steak source (commercially available) and swine blood was used to feed the combined system. The hybrid RBC process showed excellent removals: about 95% for soluble COD and 85% for ammonium nitrogen. However, the unsettled solids seriously deteriorated the removal efficiency of total COD (TCOD) and total nitrogen (TN) in the RBC process. A significant fraction of the TCOD and suspended solids (SS) was further removed in the BAF column although the effluent quality was still unsatisfactory, giving TCOD 300 mg/L, SS 180 mg/L and TN 59 mg/L. An addition of polyaluminium chloride into the RBC effluent improved the performance of the settler and BAF, producing an excellent quality of final effluent; TCOD 16.5 mg/L, SS 0 mg/L, TN 55.5 mg/L, TP 1.3 mg/L. Therefore, it was confirmed that the combined system of hybrid RBC and BAF could treat a high strength slaughter wastewater excellently.

Biological Fixation of Carbon Dioxide by Synechocystis PCC 6803 (Synechocystis PCC 6803에 의한 이산화탄소의 생물학적 고정화)

  • 김장규;원성호;김남기
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.101-107
    • /
    • 1998
  • Carbon dioxide is estimated to be responsible for 60% of the global warming effect, and this percentage is tending upward. Studies on removal and fixation of $CO_2$ in the flue gas are recognized as one of the important roles of the future biotechnology. Photobiological systems have considerably higher photosynthetic efficiency than conventional biomass system. The experiment for the photosynthetic fixation of $CO_2$ and the biomass production was performed with various initial cell concentration in a tubular photobioreactor and a bubble column $CO_2$ contactor with a gas sparger of $CO_2$ -enriched air(0.03~20%). Synechocystis PCC 6803 could grow at 10~20% $CO_2$ content under pH control. The highest specific growth rate, 0.0258 $h^{-1}$ , was obtained at 5% $CO_2$-air mixture. The maximum cell production rate, 0.2784 g/L.day, was obtained when the initial cell concentration was 0.45 g/L at 5% $CO_2$ -air mixture. The maximum cell concentration was 2.03 g/L in the tubular photobioreactor when the light intensity was $45.5{\mu}$ $E/m^2$ . s. This system showed 0.482 g $CO_2$ /L . day of the $CO_2$ fixation.

  • PDF

Ammonia removal rate on ammonia loading rates in seawater filtering system using rotating biological contactor (RBC) (회전원판을 이용한 해수 순환여과 시스템에서 암모니아 부하율에 따른 암모니아 제거율)

  • SON Maeng Hyun;JEON Im Gi;CHO Kee Chae;KIM Kang Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.4
    • /
    • pp.367-372
    • /
    • 2000
  • A series of experiment was conducted to investigate the relationship between ammoia removal rate and ammonia loading rates in seawater filtering system using rotating biological contactor (RBC). In this experiment, RBC system was consisted of rotating polyvinyl film disks, which provided $12 m^2$ of total effective surface area in $0.075 m^3$ of volume. $NH_4Cl$ was added by $10{\~}150 g$ as a ammonia nitrogen source to determine ammonia removal rate in RBC system. Relationship between time required for ammonia removal (y: hour) and nitrogen inputted ($x: NH_4-N mg/l$) in RBC system was as followed: $y=3.51+7.76 lnx (r^2=0.936)$. At ammonia concentration $2 mg/l$, it took 10 hour for removal of ammonia in the RBC system. However, at ammonia concentration of $5 and 16.5 mg/l$, it took 16 and 27 hours, respectively. There was a decreasing tencency of an increasing ammonia in the rearing water. Finally, the ammonia removal rate in the RBC system increased with the rise of total ammonia concentration up to $16.5 mg/l$.

  • PDF