• Title/Summary/Keyword: G-Force

Search Result 1,519, Processing Time 0.028 seconds

A SOFT X-RAY STUDY ON THE BONE REMODELLING IN TOOTH MOVEMENT OF DOG (성견의 실험적 치아이동시 골재형성에 관한 연X선학적 연구)

  • Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.25 no.5 s.52
    • /
    • pp.587-592
    • /
    • 1995
  • The purpose of this study was to observe the pattern of bone remodellings in the periodontal ligament of dog, in which experimental tooth movement was performed A control and 5 experimental dogs, one and half year in age, were studied. Light force (50-75g) was applied by placing open-coil spring between left mandibular premolars ; heavy force (250-300g), between right mandibular premolars. Experimental dogs were sacrificed at 12 hours, 1, 3 ,7 and 14 days after force application, respectively. And soft X-ray films were obtained and read on the sectioned periodontal tissue around mandibular premolars. The results were as follows. 1. New bone formation began to be observed in tension side at 7-day and increased at 14-day , No difference was observed between light force group and heavy force group. 2. Bone resorption was observed as a shape of destruction of lamina dura at 3-day and increased gradually at 7-day, 14-day.

  • PDF

A Transplanting Method of Laminaria japonica Areschoug (Laminariales, Phaeophyta)

  • Kim, Woong-Yong;Choi, Sung-Je;Chung, Ik-Kyo;Shin, Jong-Ahm
    • ALGAE
    • /
    • v.20 no.2
    • /
    • pp.151-155
    • /
    • 2005
  • To obtain basic data, we investigated the effect of blade length on transplants, the transplanting method of Laminaria japonica for creating L. japonica resources and the number of transplanting plates with surviving L. japonica. The survival rate of L. japonica, blade length of transplants and drag force of transplanting plates were also researched. The number of transplanting plates with surviving L. japonica, the survival rate and blade length of 20 cm long-initial transplants were greater than those of 1.5, 5 and 10 cm long-initial transplants in an outdoor aquarium. At the depth of 4 m in the coastal waters, the number of transplanting plates with surviving transplants, the survival rate and the blade length of 30 cm long-initial transplants were higher than those of 10 and 20 cm longinitial transplants. The drag force is calculated by cording up sporophytes of L. japonica into the transplanting plates under water. The drag force in the case of a 2.18 kg-weight transplanting plate and in a current speed of 0.5 m${\cdot}s^{-1}$ for considering stability of the plate was 631.50 g to a concrete substratum on the seabed, 703.92 g to a shingle substratum, 788.00 g to a sand substratum, and 1018.30 g to a silt substratum. If we consider the stability and economic efficiency of the transplanting plate, the proper weight of the plate per one individual of 18.11 cm in blade width and 190.20 cm in total blade length is regarded as 508.2 g when it is calculated with the concrete substratum that shows the lowest drag force.

Dynamic Analysis of Shattering of Tongil Paddy (통일(統一)벼의 탈립(脱粒)에 관(關)한 역학적(力學的) 분석(分析))

  • Kang, Young Sun;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.9 no.1
    • /
    • pp.11-21
    • /
    • 1984
  • This study was intended to analyze the dynamic force system which induced the shattering of paddy grains. A model to predict the shattering of paddy grains was developed, and physical quantities, such as mass distribution and rigidity of rice plant, needed for evaluating the minimum shattering forces were also measured. Under the assumption that rice plant right before harvesting is a vibratory system, the mathematical model of the vibratory system was developed and solved with the varied conditions of forcing functions. The results of the study were summarized as follows: 1. The shattering of grain occurred at the abscission layer of grain by the bending moments resulted from the impact force due to the collision of panicles of rice plant. 2. The vibratory model developed for milyang 23 rice variety was analyzed to give the natural frequencies of 7-9 Hz, which were closely related with the excitation frequencies of 4-10 Hz caused by various machine parts besides engine. Thus, avoiding the resonance should be taken into consideration in the design of the harvesting machinery. 3. It was analyzed to predict the lowest frequency that could develop the shattering when the excitation force was applied to the lower end of stem. The lowest frequency for the Milyang 23 rice variety ranged from 8.33 Hz to 11.66 Hz as the amplitude varied from 1 cm to 2.5 cm. 4. The degree of shattering depended upon the magnitude of the impact force and its application point. For Milyang 23 rice variety, the minimum impact force developing the shattering was $5g_f$ when it was applied at 1 cm above the lower end of stern and $1g_f$ when applied at 5 cm above the lower end of stem. 5. The minimum colliding velocity of the panicle, when it was on the ground that would just develop the shattering, was given as follows, $$V=\sqrt{\frac{K_t}{m_g}{\cdot}{{\phi}^2}}$$ where V : The colliding velocity of the panicle against ground to cause the shatteering of rice grain. (cm/sec) $K_t$ : The minimum spring constant for bending at the abscission layer of grain. (dyne-cm/rad) ${\phi}$ : The minimum shattering angle of grain (rad) $m_g$ : The maximum mass of grain. (g).

  • PDF

Electrical Noise Reduction and Stiffness Increase with Self Force-Balancing Effect in a High-Resolution Capacitive Microaccelerometer using Branched Finger Electrodes with High-Amplitude Sense Voltage (고감지전압 및 가지전극을 이용한 고정도 정전용량형 미소가속도계의 전기적 잡음 감소 및 자율 균형력 발생에 의한 강성 증가)

  • Han, Gi-Ho;Jo, Yeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.4
    • /
    • pp.169-174
    • /
    • 2002
  • This paper presents a high-resolution capactive microaccelerometer using branched finger electrodes with high-amplitude sense voltage. From the fabricated microacceleromcter, the total noise is obtained as 9 $\mu\textrm{g}$/√Hz at the sense voltage of 16.5V, while the conventional microaccelerometers have shown the noire level of 25~800 $\mu\textrm{g}$/√Hz. We reduce the mechanical noise level of the microaccelerometer by increasing the proof-class based on deep RIE process of an SOI wafer. We reduce the electrical noise level by increasing the amplitude of AC sense voltage. The nonlinearity problem caused by the high-amplitude sense volage has been solved by a new electrode design of branched finger type, resulting in self force-balancing effects for the enhanced linearity and bandwidth. The fabricated microaccelerometer shows the electrical noise of 2.4 $\mu\textrm{g}$/√Hz at the sense voltage of 16.5V, which is an order of magnitude reduction of the electrical noise of 24.3 $\mu\textrm{g}$/√Hz measured at 0.9V. For the sense voltage higher than 2V, the electrical noise of the microaccelerometer is lower than the voltage-independent mechanical noise of 11 $\mu\textrm{g}$/√Hz. Total noise, composed of the electrical noise and the mechanical noire, has been measured as 9 $\mu\textrm{g}$/√Hz at the sense voltage of 16.5V, which is 31% of the total noise of 28.6 $\mu\textrm{g}$/√Hz at the sense voltage 0.9V. The self force-balancing effect in the blanched finger electrodes increases the stiffness of the microaccelerometer from 1.1N/m to 1.61N/m as the sense voltage increases from 0V to 17.8V, thereby generating additional stiffness at the rate of 0.0016$\pm$0.0008 N/m/V$^2$.

Changes in Pectin-degrading Enzymes activity during Storage of Satsuma Mandarin (온주밀감의 저장 중 성분과 펙틴분해효소의 변화)

  • Kang, Moon-Jang;Kim, Ji-Yong;Koh, Jeong-Sam
    • Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.179-183
    • /
    • 2000
  • Satsuma mandarin(Citrus unshiu Marc. var. miyagawa) was stored at $3^{\circ}C$ and 85% relative humidity, and then the changes of firmness, pectin- degrading enzymes activity and other physicochemical properties of citrus fruits during storage were investigated. Firmness of fruits with 2 m probe was decreased quickly from 1,176.8 g-force to 503.6 g-force, and moisture of peel and flesh were decreased from 75.3% to 74.9%, and from 91.8% to 90.7% during maturation, respectively. Decay ratio was increased to 18.75% after 90 days' storage, and after then it was increased rapidly. Weight loss was increased gradually to 24.5% during long-term storage. Firmness with 2 mm probe were decreased from 538.9 g-force to 336.9 g-force gradually during storage. Peel moisture was decreased from 75.8% to 72.6%, and flesh moisture was also decreased gradually from 90.3% to 88.3% during storage. Exopoly-galacturonase activity of peel and flesh were increased from 326.0 units/100 g to 534.9 units/100 g, and from 63.1 units/100 g to 81.0 units/100 g at 90 day's storage, respectively. After then, He enzyme activities were decreased from 394.0 units/100 g and 38.0 units/100 g, respectively. Pectinesterase activity of peel and flesh were increased from $14.4\;{\mu}mol$ to $38.8{\mu}mol$, and from $26.0{\mu}mol$ to $39.0{\mu}mol$ at 60 days' storage, respectively. After then, the enzyme activities were decreased to $6.0{\mu}mol$ and $8.2{\mu}mol$, respectively.

  • PDF

A FEM comparison study about the force, displacement and initial stress distribution on the maxillary first molars by the application of Asymmetric Head-Gears with the different traction forces (Asymmetric Head-Gear의 견인력의 차이에 따른 상악 제 1 대구치에 나타나는 힘과 변위 및 초기 응력분포에 관한 유한요소법적 비교 연구)

  • Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.31 no.3 s.86
    • /
    • pp.311-323
    • /
    • 2001
  • One of the various mechanics used to treat unilateral Class II malocclusion is head gear with asymmetric face bow. We made the finite element models of unilateral Class II maxillary dental arch and power arm asymmetric face bow. We designed this experiment to observe stress distribution of periodontal ligament, reaction force, and displacement and to understand force system, so to predict the therapeutic effect. On the basis of computerized tomograph of maxillary dental arch of 25 years old male with normal occlusion without extraction and orthodontic treatment history, we made finite element models of maxillary dental arch and periodontal ligament. Then we modified that model to unilateral maxillary Class II malocclusion model of which maxillary left molar displaced mesially. Also, We made finite element model of asymmetric face bow of which right outer bow shorter than left by 25mm(RMO, Penta-FormTM/Medium size, 0.045 inch iner bow, 0.072 inch outer bow). After that, retraction force of 250g, 300b, 350g were applied to maxillary first molar. We concluded as follow. 1. The Net force that both maxillary first molars were received increased as the retraction force increased. Mesially positioned tooth received more force than normally positioned tooth. But, both tooth were received distal force, so distal movement occured. 2. Both tooth received buccal lateral force. In analysis of force element, as the retraction force were increased, force of X-axis at mesially positioned tooth decreased, and force of X-axis at normally positioned tooth increased. so lateral force component moved to the side received less force from more force. 3. There were rotation, tipping with distal movement in maxillary first molar. As retraction force were increased, rotation and tipping also increased. More tipping and rotation occured at the side received more force, that is, mesially positioned tooth. Though it Is small change, displacement of same pattern occur in normally positioned tooth

  • PDF

A STUDY OF WORKING EFFICIENCY AND FILE DEFORMATION OF GT ROTARY FILE IN CURVED CANALS (GT rotary file을 이용한 만곡 근관형성시 작업 효율 및 file 변형 발생에 관한 연구)

  • 신주희;백승호;배광식;임성삼;윤수한;김병현
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.5
    • /
    • pp.418-435
    • /
    • 2001
  • Root canal preparation process is of utmost importance in successful treatment of root canal. Also, one of the most important purpose of the root canal preparation is to enlarge the root canal three dimensionally without changing the curvature of the root canal However as the curvature of the root canal increases, there are many difficulties involved in formation of optimum root canal. Therefore in order to solve the above mentioned problems, new developments in methods of root canal preparation and equipments for such purposes were made. Recently, vigorous studies about newly introduced engine-driven nickel-ti-tanium rotary file are conducted. As shown in research results to dates, it is well established that the use of nickel-titanium file is better suited for curved root canal than stainless steel file in maintaining the curvature or root canal and reducing the deformation of root canal. However it is also acknowledged that there are a few discrepancies in research results according to protocol, due to failure to remove variables in experiments. In addition, although it is recommended by the manufacturer that the GT rotary file should maintain a low rotational speed of 150~350rpm and 'light pressure' as light as not to break the lead of a pencil, academic studies about the vertical force which is not yet standardized are not sufficiently explored. Therefore, this research devised and utilized a special research equipment to standardize the appropriate range of vertical force for GT rotary file through experiments by breaking of the lead of a pencil as expressed by the manufacturer and to accurately measure factors involved through repeating and recreating the environment of root canal preparation. Forming nine experimental groups by varying the vertical forces (150g. 220g, 300g) and rpm (150rpm, 250rpm, 350rpm), the effects of changing vertical forces and rpm on working efficiency were measured in terms of time expended in root canal preparation by crown-down method using a transparent resin block with 35 degree curvature and GT rotary file (z-test). The following research using this special research equipment that involved nine experimental groups and varying the vertical force for root canal preparation from 300g which is within the normal vertical force range to 700g and 1000g which fall outside the normal rpm range. The results were as follows : 1. Analysis of the experiment results revealed that the time spent in root canal preparation decreased as the vertical forces and rpm increased (p<0.05). Also, the effects of rpm were greater than those of the vertical forces within the normal vertical force range ($\beta$-weight test). 2. Observation of the deformation of GT rotary file revealed that deformation increases in a direct correlation with the vertical force increase and in a reverse correlation with the rpm decrease. In the case of the vertical forces close to the normal range, the probability of GT rotary file deformation were quite different depending on the rpm changes. In the case of greater vertical forces, the occurrences of deformation of the file were more frequent regardless of the rpm changes. 3. Deformation and breakage of file were also commonly observed in the expended time measurement experiments and GT rotary file deformation experiments in which low speed rpm (150rpm) was used and at the curved portion of the resin block.

  • PDF

AN EXPERIMENTAL STUDY ON THE VASCULAR CHANGES OF RAT MOLAR PERIODONTAL LIGAMENT FOLLOWING ORTHODONTIC TOOTH MOVEMENT USING VASCULAR CORROSION CASTING METHOD (백서구치의 실험적 치아이동시 치근막 혈관변화에 관한 혈관주형법을 이용한 연구)

  • Lim, Yong-Kyu;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.24 no.1 s.44
    • /
    • pp.37-62
    • /
    • 1994
  • This study was undertaken to investigate the three dimensional vascular changes of periodontal ligament following orthodontic tooth movement. Experimental tooth movement was carried out in 96 Sprague-Dawley rats with the weight of 250g. They were divided into four experimental groups (each 24 rats). The left maxillary first molar was moved mesially with 25g force in group I, and with 75g force in group II. Each three animals were sacrificed after 1, 6, 12, 24 hours, and 3, 7, 14, 21 days. In group III, 25g mesial force was applied for 3 days, and in group IV, 75g mesial force was applied for 3 days. Then the appliances were removed, and each three animals were sacrificed after 1, 6, 12, 24 hours, and 3, 7, 14, 21 days from removal of appliance. The contralateral molars were used for control group. Casting media was injected via left ventricle and polymerized in warm water. After corrosion of surrounding soft tissue, three dimensional vascular changes were examined using scanning electron microscopy. The findings of this study were as follows: 1. Pressure side of group I and II showed degenerative vascular changes such as vascular compression, reduction of vasculature, leakage of casting media. But, regenerative changes were dominant after 7 days of tooth movement. Although the degenerative vascular changes were more severe in group II, which was exposed to heavy force, the timing of these changes was not different between two groups. 2. Periodontal vasculature was reestablished by the growth of new capillaries and their differentiation and union from the remaining periodontal vessels and vessels of alveolar bone marrow. Although vascular regeneration was more rapid in group I, which was exposed to light force, the vasculature was not fully normalized in both groups even after 21 days. 3. There was no remarkable changes in tension side of group I and II, but looping of capillary, new capillary growth, dilation of vessels, redirection of vessels in the direction of tensile force were occurred. 4. In pressure side of group III and IV, in which appliance was removed after 3 days of orthodontic force, bone resorption was continued even after removal of appliance. Regeneration of vasculature was initiated after 1-6 hours, and it was more rapid in group III than group IV. In both groups, the vasculature was not fully normalized even after 21 days. 5. After removal of appliance, tension side of group III and IV showed vascular compression and loss of vasculature.

  • PDF

A STUDY ON THE SHOCK-ABSORBING BEHAVIOR OF RESTORATIVE MATERIALS AND INTERMOBILE CONNECTOR USEDIN IMZ IMPLANTS (수복재료와 내가동연결장치가 IMZ 임프란트 보철물의 충격흡수효과에 미치는 영향)

  • Lee, Su-Jeong;Chung, Chan-Mo;Jeon, Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.1
    • /
    • pp.118-129
    • /
    • 1997
  • The purpose of this study was to evaluate the shock absorbing effect of 4 restorative materials and intramobile connector. The damping effect of four restorative materials used to veneer test crown rigidly connected to IMZ implant and subjected to an impact force was measured. These materials included a gold alloy(stabilor G) : a noble metal ceramic alloy(Degudent H) : porcelain(Duceram) : composite resin(Dentacolor). In addition, this study compared damping effect of same restoretive materials after using polyoxymethylene intramobile connector(POM IMC). The result of this study suggest that : In case of using metal IMC 1. Veneered composite resin(group IV) reduced the impact force by 75%, when compared to an equivalent thickness of porcelain(group III). Group IV reduced the impact force by 87% and 89%, respectively, when compared to Stabilor G(group I) and Degudent H(group II). 2. The impact force recorded was higher for the alloy with the higher elastic modulus.(Stabilor G, group I, Young's modulus 107 Gpa, versus Degudent H, Group II, Young's modulus 95 Gpa) 3. It took the longest time for composite resin veneered group(IV) to reach to peak force when compared group I, II, III. In case of using POM IMC 4. The mean impact force recorded were reduced by 79%(group I), 78%(group II), 69%(group III), 84%(group IV), respectively, when compared to using metal IMC. 5. The time required to reach the peak force were increased by 78%(group I, II) 87%(group III), 34%(group IV), respectively, when compared to using metal IMC>.

  • PDF

Study on the Behavior of the Fish - 1 . The Swimming Force of Crusian Carp , Carassius Carassius - (어류의 행동에 관한 연구 - 1 . 붕어의 유영력 -)

  • 손태준
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.1
    • /
    • pp.1-5
    • /
    • 1984
  • The author carried out an experiment for the dynamical swimming force of crusian carp, Carassius carassius. The experimental water tank was made of 4mm thick transparent acryl board in the right hexahedral shape (400L$\times$240W$\times$800H mm). The water temperature in the tank ranged 20.6$^{\circ}C$ to 21.2$^{\circ}C$. The water level in the tank was maintained 70cm high from the bottom. The measurement of the swimming force was carried out by use of strain gauge. The results obtained can be summarized as follows: 1) The momentary maximum swimming force F sub(M) (g) and the sustainable maximum swimming force F sub(s) (g) can be expressed as a function of the body weight W(g). F sub(M) =1.45W, F sub(s) =0.29W where the momentary maximum swimming force means the highest value, and the sustainable maximum swimming force means the mean high value sustained for 4 to 5 seconds presented in the recording paper. 2) F sub(M) and F sub(s) can be expressed as a function of the body length L(cm). F sub(M) =0.11L super(2.63), F sub(s) =0.15L super(1.77) 3) The coefficient of hydraulic resistance for crusian carp was derived as 0.287.

  • PDF