• Title/Summary/Keyword: G-Force

Search Result 1,515, Processing Time 0.029 seconds

Physical Properties of Jujube(Zizyphus jujuba Miller) for Mechanical Harvesting (기계수확을 위한 대추의 물리적 특성 분석)

  • Huh, Yun-Kun;Lee, Sang-Woo
    • Korean Journal of Agricultural Science
    • /
    • v.31 no.2
    • /
    • pp.115-122
    • /
    • 2004
  • Physical and mechanical properties of fruits of jujube (Zizyphus jujuba Miller), leaves, secondary branches, and leafy stems were measured and analyzed. The physical dimensions of the fruits were measured and the detachment force of the fruit and leafy stems was measured. The detachment force of the jujube fruits increased and the force-to-weight ratio of the jujube fruits decreased as the weight of the jujube fruit increased. The weight of the leafy stems, number of leaves attached to the leafy stems, length of the leafy stems, diameter of the stem side of the leafy stems, diameter of the leafy stem end was average of 0.7g, 6.6ea, 12.2cm, 4.5mm, and 2.7mm, respectively. The major and minor axis of the jujube leaves, area of leaves, weight of the leaves, and detachment force of the leaves was average of 5.7cm, 3.3cm, $12.98cm^2$, 0.20g, and 4.39N, respectively. The terminal velocity of the jujube fruits increased as the weight of the fruits increased. The terminal velocity of the leafy stems, however, did not show a relationship with the weight of the leafy stems and the number of leaves attached to the leafy stem. The terminal velocity, however, slightly increased as the length of the leafy stems increased.

  • PDF

Quality characteristics of semi-dried restructured jerky: combined effects of duck skin gelatin and carrageenan

  • Kim, Se-Myung;Kim, Tae-Kyung;Ku, Su-Kyung;Kim, Min Jung;Jung, Samooel;Yong, Hae In;Choi, Yun-Sang
    • Journal of Animal Science and Technology
    • /
    • v.62 no.4
    • /
    • pp.553-564
    • /
    • 2020
  • The present study investigated the effects of duck skin gelatin and carrageenan on the quality of semi-dried restructured jerky. Restructured jerky was prepared as follows: G0 (control, without duck skin gelatin and carrageenan), G0C (0.3% carrageenan), G0.5 (0.5% duck skin gelatin), G0.5C (0.5% duck skin gelatin and 0.3% carrageenan), G1 (1.0% duck skin gelatin), and G1C (1.0% duck skin gelatin and 0.3% carrageenan). The moisture content was the highest for the semi-dried restructured jerky from G0.5C and G1C groups, which showed the lowest for shear force value (p < 0.05). The processing yield of semi-dried restructured jerky with carrageenan was higher compared to that of the control group (p < 0.05). The rehydration capacities of G0.5, G0.5C, and G1C groups were significantly higher than the rehydration capacity of the control group (p < 0.05). Water activity, lightness, yellowness, flavor score, texture score, and overall acceptability were the highest (p < 0.05) for the semi-dried restructured jerky from the G1C group. No significant (p > 0.05) difference was observed in appearance score among restructured jerky prepared from duck skin gelatin and carrageenan. Thus, the addition of 1.0% duck skin gelatin and 0.3% carrageenan to semi-dried restructured jerky formulations results in the optimization of quality characteristics.

Single Crystal Growth Behavior in High-Density Nano-Sized Aerosol Deposited Films

  • Lim, Ji-Ho;Kim, Seung-Wook;Kim, Samjung;Kang, Eun-Young;Lee, Min Lyul;Samal, Sneha;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.488-495
    • /
    • 2021
  • Solid state grain growth (SSCG) is a method of growing large single crystals from seed single crystals by abnormal grain growth in a small-grained matrix. During grain growth, pores are often trapped in the matrix and remain in single crystals. Aerosol deposition (AD) is a method of manufacturing films with almost full density from nano grains by causing high energy collision between substrates and ceramic powders. AD and SSCG are used to grow single crystals with few pores. BaTiO3 films are coated on (100) SrTiO3 seeds by AD. To generate grain growth, BaTiO3 films are heated to 1,300 ℃ and held for 10 h, and entire films are grown as single crystals. The condition of grain growth driving force is ∆Gmax < ∆Gc ≤ ∆Gseed. On the other hand, the condition of grain growth driving force in BaTiO3 AD films heat-treated at 1,100 and 1,200 ℃ is ∆Gc < ∆Gmax, and single crystals are not grown.

The Effect of Temperature on the Nano-scale Adhesion and Friction Behaviors of Thermoplastic Polymer Films (열가소성 폴리머 필름의 나노 응착 및 마찰 거동에 대한 온도의 영향)

  • Kim, Kwang-Seop;Ando, Yasuhisa;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.288-297
    • /
    • 2007
  • Adhesion and friction tests were carried out in order to investigate the effect of temperature on the tribological characteristics of poly (methylmethacrylate) (PMMA) film using AFM. The pull-off and friction forces on the PMMA film were measured under a high vacuum condition (below $1{\times}10^{-4}$ Pa) as the temperature of the PMMA film was increased from 300 K to 420 K (heating) and decreased to 300K (cooling). Friction tests were also conducted in both high vacuum and air conditions at room temperature. When the temperature was 420 K, which is 25 K higher than the glass transition temperature $(T_g)$ of PMMA, the PMMA film surface became deformable. Subsequently, the pull-off force was proportional to the maximum applied load during the pull-off force measurement. In contrast, when the temperature was under 395 K, the pull-off force showed no correlation to the maximum applied load. The friction force began to increase when the temperature rose above 370 K, which is 25 K lower than the $T_g$ of PMMA, and rapidly increased at 420 K. Decrease of the PMMA film stiffness and plastic deformation of the PMMA film were observed at 420 K in force-displacement curves. After the heating to 420 K, the fiction coefficient was measured under the air condition at room temperature and was found to be lower than that measured before the heating. Additionally, the RMS roughness increased as a result of the heating.

An Extended Force Density Method for the form finding of cable systems with new forms

  • Malerba, P.G.;Patelli, M.;Quagliaroli, M.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.191-210
    • /
    • 2012
  • The Force Density Method (FDM) is a well known and extremely versatile tool in form finding of cable nets. In its linear formulation such method makes it possible to find all the possible equilibrium configurations of a net of cables having a certain given connectivity and given boundary conditions on the nodes. Each singular configuration corresponds to an assumed force density distribution. Its improvement as Non-Linear Force Density Method (NLFDM) introduces the possibility of imposing assigned relative distances among the nodes, the tensile level in the elements and/or their initial undeformed length. In this paper an Extended Force Density Method (EFDM) is proposed, which makes it possible to set conditions in terms of given fixed nodal reactions or, in other words, to fix the positions of a certain number of nodes and, at the same time, to impose the intensity of the reaction force. Through such extension, the (EFDM) enables us to deal with form findings problems of cable nets subjected to given constraints and, in particular, with mixed structures, made of cables and struts. The efficiency and the robustness of method are assessed through comparisons with other form finding techniques in dealing with characteristic applications to the prestress design of cable systems. As a further extension, the EFDM is applied to structures having some parts not yet geometrically defined, as can happen in designing new creative forms.

An Analysis of Wind Force Coefficient Distributions for Optimum Design of Single-Span Arched Greenhouse (아치형 단동온실의 최적설계를 위한 풍력계수분포도의 분석)

  • 이석건;이현우;권무남
    • Journal of Bio-Environment Control
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 1995
  • One of the most destructive forces around greenhouses is wind. Wind loads can be obtained by multiplying velocity pressure by dimensionless wind force coefficient. Generally, wind force coefficients can be determined by wind tunnel experiments. The wind force coefficient distribution on a single - span arched greenhouse was estimated using experimental data and compared with reported values from various countries. The results obtained are as follows : 1. The coefficients obtained from this study agree with the values proposed by G. L. Nelson except about 0.5 of difference in the middle region of roof section. This discrepancy is mainly attributed to the dissimilarity of experimental conditions (or wind tunnel test such as Reynolds number, type of terrain, surface roughness of model, location of the lapping and measuring methods. 2. Considering that the wind force coefficients are varied along the height of a wall at wind direction perpendicular to wall, structural analysis using subdivided wind force coefficient distribution is more resonable for wall. 3. It is recommendable that wind force coefficient distribution on a roof should take more subdivision than the existing four equal divisions for more accurate structural design. 4. Structural design using wind forces close to real values is more advantageous in safety and expense.

  • PDF

An analytical expression for a dynamic optimal design of the stewart platform (스튜어트 플랫폼의 동역학적 최적설계를 위한 해석적인 표현)

  • Kwon, Byung-Hee;Son, Kwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.175-178
    • /
    • 1997
  • This study was carried out to obtain an analytical expression for the specifications of the Stewart Platform that minimize the maximum force acting on the hydraulic cylinder. The position and orientation of the platform were calculated by means of the inverse kinematic analysis. The maximum force to be exerted on a cylinder was calculated using the Newton's second law for the case when the platform is moved along a horizontal axis with 0.6 g, the maximum translational acceleration possible. This paper suggests a mathematical model to minimize the maximum actuating force using radius and angle ratios as design variables. Finally, a fuzzy set for the minimum actuating force is proposed for this dynamic optimal design problem.

  • PDF

A Study on the Advance of Measuring Accuracy of High Tension Bolt Axial Force Using Ultrasonic Acoustoelasticity Effects (초음파 음탄성효과를 이용한 고장력 볼트의 축력측정정도 향상에 관한 연구)

  • Kim, H.S.;Oh, H.G.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.12 no.4
    • /
    • pp.26-31
    • /
    • 1993
  • In this paper, the axial force of high tension bolt is measured by using ultrasonic wave. In the case of the different materials the conclusion obtained are as follows : (1) The relation of the material quality of each high tension bolt and form(diameter or section area), and yield axial force can be observed. (2) As 0.1 is devided by the apparent elongation the measurement accuracy of high tension bolt can be achived. Also, it is founded that the Joint axial force of high tension bolt is determined by the yield force.

  • PDF

Vibration-Based Monitoring of Stay-Cable Force Using Wireless Piezoelectric-Based Strain Sensor Nodes

  • Nguyen, Khac-Duy;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.669-677
    • /
    • 2012
  • This study presents a method to monitor cable force using wireless sensor nodes and piezoelectric sensors. The following approaches are carried out to achieve the objective. Firstly, the principle of piezoelectric materials (e.g., PZT) as strain sensors is reviewed. A cable force estimation method using dynamic features of cables measured by piezoelectric materials is presented. Secondly, the design of an automated cable force monitoring system using the data acquisition sensor-node Imote2/SHM-DAQ is described. The sensor node is originally developed by University of Illinois at Urbana-Champaign and is adopted in this study to monitor strain-induced voltage from PZT sensors. The advantages of the system are cheap, and eligible for wireless communication and automated operation. Finally, the feasibility of the proposed monitoring system is evaluated on a lab-scaled cable.

Deburring of Irregular Burr using Vision and Force Sensors (비젼과 힘센서를 이용한 불균일 버의 디버링 가공)

  • Choi, G.J.;Kim, Y.W.;Shin, S.W.;Ahn, D.S.
    • Journal of Power System Engineering
    • /
    • v.2 no.3
    • /
    • pp.83-88
    • /
    • 1998
  • This paper presents an efficient control algorithm that removes irregular burrs using vision and force sensors. In automated robotic deburring, the reference force should be accommodated to the profile of burrs in order to prevent the tool breakage. In this paper, (1) The profile of burrs is recognized by vision sensor and followed by the calculation of reference force, (2) Deburring expert's skill is transferred to robot. Finally, the performance of robot is evaluated through simulation and experiment.

  • PDF