• Title/Summary/Keyword: Fyn-related kinase

Search Result 3, Processing Time 0.02 seconds

Assessment of Relationship between Fyn-related Kinase Gene Polymorphisms and Overweight/Obesity in Korean Population

  • Jung, Mi-Young;Kim, Bum-Shik;Kim, Youn-Jung;Koh, In-Song;Chung, Joo-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.2
    • /
    • pp.83-87
    • /
    • 2008
  • The fyn-related kinase (FRK) belongs to the tyrosine kinase family of protein kinases. Recent studies have shown that Frk affects pancreatic beta cell number during embryogenesis and promotes beta cell cytotoxic signals in response to streptozotocin. To investigate the genetic association between FRK polymorphisms and the risk of obesity in Korean population, single nucleotide polymorphisms (SNPs) in the FRK gene region were selected and analyzed. The body mass index (BMI) was calculated, and biochemical data (systolic blood pressure, diastolic blood pressure, hemoglobin A1C, triglyceride, total cholesterol, high density lipoprotein, and low density lipoprotein) of blood sample from each subject were also measured. One hundred fifty five healthy control and 204 overweight/obesity subjects were recruited. Genotype frequencies of six SNPs [rs6568920 (+8391G>A), rs3756772 (+56780A>G), rs3798234 (+75687C>T), rs9384970 (+68506G>A), rs1933739 (+72978G>A), and rs9400883 (+75809A>G)] in the FRK gene were determined by Affymetrix Targeted Genotyping Chip data. According to the classification of Korean Society for the Study of Obesity, control (BMI 18 to < 23) and overweight/obesity (BMI$\geq$23) subjects were recruited. For the analysis of genetic data, EM algorithm, SNPStats, Haploview, HapAnalyzer, SNPAnalyzer, and Helixtree programs were used. Multiple logistic regression analysis (codominant, dominant, and recessive models) was performed. Age and gender as covariates were adjusted. For biochemical data, Student's t test was used. The mean value of BMI in the control and overweigh/obesity groups was 21.1${\pm}$1.2 (mean${\pm}$SD) and 25.6${\pm}$2.0, respectively. All biochemical data of the overweight/obesity group were statistically significance, compared with the control group. Among six SNPs, two linkage disequilibrium (LD) blocks were discovered. One block consisted of rs1933739 and rs9400883, and the other comprised rs3756772 and rs3798234. One SNP (rs9384970, +68506G>A) showed an association with overweight/obesity in the codominant model (p=0.03). Interestingly, the AA genotype distribution in the overweight/obesity group (n=7, 3.5%) was higher than those in the control group (n=1, 0.6%), which is not found in either Japanese or Chinese subjects. Therefore, the AA genotype of rs9384970 may be a risk factor for development of obesity in Korean population. The results suggest that FRK may be associated with overweight/obesity in Korean population.

An Anti-Cancer Drug Candidate CYC116 Suppresses Type I Hypersensitive Immune Responses through the Inhibition of Fyn Kinase in Mast Cells

  • Park, Young Hwan;Kim, Hyun Woo;Kim, Hyuk Soon;Nam, Seung Taek;Lee, Dajeong;Lee, Min Bum;Min, Keun Young;Koo, Jimo;Kim, Su Jeong;Kim, Young Mi;Kim, Hyung Sik;Choi, Wahn Soo
    • Biomolecules & Therapeutics
    • /
    • v.27 no.3
    • /
    • pp.311-317
    • /
    • 2019
  • Mast cells are the most prominent effector cells of Type 1 hypersensitivity immune responses. CYC116 [4-(2-amino-4-methyl-1,3-thiazol-5-yl)-N-[4-(morpholin-4-yl)phenyl] pyrimidin-2-amine] is under development to be used as an anti-cancer drug, but the inhibitory effects of CYC116 on the activation of mast cells and related allergy diseases have not reported as of yet. In this study, we demonstrated, for the first time, that CYC116 inhibited the degranulation of mast cells by antigen stimulation ($IC_{50}$, ${\sim}1.42{\mu}M$). CYC116 also inhibited the secretion of pro-inflammatory cytokines including TNF-${\alpha}$ ($IC_{50}$, ${\sim}1.10{\mu}M$), and IL-6 ($IC_{50}$, ${\sim}1.24{\mu}M$). CYC116 inhibited the mast cell-mediated allergic responses, passive cutaneous anaphylaxis (ED50, ~22.5 mg/kg), and passive systemic anaphylaxis in a dose-dependent manner in laboratory experiments performed on mice. Specifically, CYC116 inhibited the activity of Fyn in mast cells and inhibited the activation of Syk and Syk-dependent signaling proteins including LAT, $PLC{\gamma}$, Akt, and MAP kinases. Our results suggest that CYC116 could be used as an alternative therapeutic medication for mast cell-mediated allergic disorders, such as atopic dermatitis and allergic rhinitis.

Effect of Ullmus macrocarpa Hance Ethanol extract (Ulmus) on Improvement of allergic responses in RBL-2H3 mast Cells (RBL-2H3 비만세포에서 유백피 에탄올 추출물의 알레르기 반응 개선에 대한 효과)

  • Do, Hyun Ju;Oh, Tae Woo
    • Herbal Formula Science
    • /
    • v.29 no.4
    • /
    • pp.191-203
    • /
    • 2021
  • Objectives : In this study, we investigate the anti-allergic effects of Ullmus macrocarpa Hance (Ulmus) on RBL-2H3 mast cell (basophilic leukemia cell line), which are mediated by FcεRIs. Methods : We evaluated the effect of the ethanol extract of Ulmus on the allergic inflammatory response in IgE-antigen-mediated RBL-2H3 cells. Cell toxicity was determined by MTT assay and the markers of degranulation such as beta-hexosaminidase, histamine, PGD2, TNF-α, IL-4, IL-6 production of inflammatory mediators and FcεRI-mediated protein expression by western blot. Results : Ulmus inhibited degranulation and production of allergic mediators (e.g., TNF-α, IL-4, and IL-6) in them. Ulmus reduced histamine levels, expression of FcεRI signaling-related genes such as Lyn, Syk, and Fyn, and extracellular signal-regulated kinase phosphorylation in mast cells. Also, Ulmus reduced PGD2 release and cyclooxygenase-2 expression, and cytosolic phospholipase A2 phosphorylation in FcεRI-mediated RBL-2H3 mast cells. Conclusions : These results indicate that Ulmus exhibits anti-allergic activity through inhibition of degranulation and inflammatory mediators and cytokine release. These findings suggest that Ulmus may have potential as a prophylactic and therapeutic agent for the treatment of various allergic diseases.