• 제목/요약/키워드: Fuzzy-c mean

검색결과 95건 처리시간 0.024초

Adaptive Clustering Algorithm for Recycling Cell Formation An Application of the Modified Fuzzy ART Neural Network

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 춘계공동학술대회-지식경영과 지식공학
    • /
    • pp.253-260
    • /
    • 1999
  • The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences during product use phase and recycling cells are formed design, process and usage attributes. In order to treat the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem for disposal products. In this paper, a heuristic approach for fuzzy ART neural network is suggested. The modified Fuzzy ART neural network is shown that it has a great efficiency and give an extension for systematically generating alternative solutions in the recycling cell formation problem. We present the results of this approach applied to disposal refrigerators and the comparison of performances between other algorithms. This paper introduced a procedure which integrates economic and environmental factors into the disassembly of disposal products for recycling in recycling cells. A qualitative method of disassembly analysis is developed and its aim is to improve the efficiency of the disassembly and to generated an optimal disassembly which maximize profits and minimize environmental impact. Three criteria established to reduce the search space and facilitate recycling opportunities.

  • PDF

A SOFT-SENSING MODEL FOR FEEDWATER FLOW RATE USING FUZZY SUPPORT VECTOR REGRESSION

  • Na, Man-Gyun;Yang, Heon-Young;Lim, Dong-Hyuk
    • Nuclear Engineering and Technology
    • /
    • 제40권1호
    • /
    • pp.69-76
    • /
    • 2008
  • Most pressurized water reactors use Venturi flow meters to measure the feedwater flow rate. However, fouling phenomena, which allow corrosion products to accumulate and increase the differential pressure across the Venturi flow meter, can result in an overestimation of the flow rate. In this study, a soft-sensing model based on fuzzy support vector regression was developed to enable accurate on-line prediction of the feedwater flow rate. The available data was divided into two groups by fuzzy c means clustering in order to reduce the training time. The data for training the soft-sensing model was selected from each data group with the aid of a subtractive clustering scheme because informative data increases the learning effect. The proposed soft-sensing model was confirmed with the real plant data of Yonggwang Nuclear Power Plant Unit 3. The root mean square error and relative maximum error of the model were quite small. Hence, this model can be used to validate and monitor existing hardware feedwater flow meters.

다항식 방사형기저함수 신경회로망을 이용한 ASP 모델링 및 시뮬레이터 설계 (Design of Modeling & Simulator for ASP Realized with the Aid of Polynomiai Radial Basis Function Neural Networks)

  • 김현기;이승주;오성권
    • 전기학회논문지
    • /
    • 제62권4호
    • /
    • pp.554-561
    • /
    • 2013
  • In this paper, we introduce a modeling and a process simulator developed with the aid of pRBFNNs for activated sludge process in the sewage treatment system. Activated sludge process(ASP) of sewage treatment system facilities is a process that handles biological treatment reaction and is a very complex system with non-linear characteristics. In this paper, we carry out modeling by using essential ASP factors such as water effluent quality, the manipulated value of various pumps, and water inflow quality, and so on. Intelligent algorithms used for constructing process simulator are developed by considering multi-output polynomial radial basis function Neural Networks(pRBFNNs) as well as Fuzzy C-Means clustering and Particle Swarm Optimization. Here, the apexes of the antecedent gaussian functions of fuzzy rules are decided by C-means clustering algorithm and the apexes of the consequent part of fuzzy rules are learned by using back-propagation based on gradient decent method. Also, the parameters related to the fuzzy model are optimized by means of particle swarm optimization. The coefficients of the consequent polynomial of fuzzy rules and performance index are considered by the Least Square Estimation and Mean Squared Error. The descriptions of developed process simulator architecture and ensuing operation method are handled.

클러스터링 기반 RBFNNs를 이용한 기상레이더 패턴분류기 설계 : 비교 연구 및 해석 (Design of Meteorological Radar Pattern Classifier Using Clustering-based RBFNNs : Comparative Studies and Analysis)

  • 최우용;오성권
    • 한국지능시스템학회논문지
    • /
    • 제24권5호
    • /
    • pp.536-541
    • /
    • 2014
  • 기상레이더를 통해 취득된 데이터에는 지형에코, 파랑에코, 이상에코, 그리고 청천에코등이 존재한다. 각 에코는 여러 종류의 비강수에코이고, 이 비강수에코를 제거하기 위해 각 에코들의 특성을 분석하였다. 기상레이더 데이터는 매우 방대한 양이기 때문에 전처리 절차를 통해 분석된다. 본 논문에서는 클러스터링 기반 방사형 기저함수 신경회로망(RBFNNs : Radial Basis Function Neural Networks)과 에코 판단 모듈을 이용하여 기상레이더 데이터에서 강수에코와 비강수에코들을 구별하기 위한 에코 패턴분류기를 설계하였다. HCM(Hard C-Mean) 클러스터링 기반 RBFNNs 와 FCM(Fuzzy C-Mean) 클러스터링 기반 RBFNNs를 이용하여 출력성능은 비교 및 분석된다.

점착력 계수 추정을 이용한 이동 로봇의 퍼지 재점착 제어기 설계 (Design of a Re-adhesion Controller using Fuzzy Logic with Estimated Adhesion Force Coefficient for Wheeled Robot)

  • 권선구;허욱열;김진환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.620-622
    • /
    • 2004
  • Mobility of an indoor wheeled robot is affected by adhesion force that is related to various floor conditions. When the adhesion force between driving wheels and the floor decreases suddenly, the robot has a slip state. In order to overcome this slip problem, optimal slip velocity must be decided for stable movement of wheeled robot. First of all, this paper shows that conventional PI control can not be applied to a wheeled robot of the light weigh. Secondly, reposed fuzzy logic applied by the Takagi-Sugeno model for the configuration of fuzzy sets. For the design of Takaki-Sugeno model and fuzzy rule, proposed algorithm uses FCM(Fuzzy c-mean clustering method) algorithm. In additionally, this algorithm controls recovered driving torque for the restrain the re-slip. The proposed fuzzy logic controller(FLC) is pretty useful with prevention of the slip phenomena through that compare fuzzy with PI control for the controller performance in the re-adhesion control strategy. These procedures are implemented using a Pioneer 2-DXE wheeled robot parameter.

  • PDF

Fuzzy c-means의 문제점 및 해결 방안 (Problems in Fuzzy c-means and Its Possible Solutions)

  • 허경용;서진석;이임건
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권1호
    • /
    • pp.39-46
    • /
    • 2011
  • 클러스터링은 주어진 데이터 집합을 균일한 특성을 가지는 몇 개의 그룹으로 묶는 대표적인 비교사 학습 방법 중 하나로 지금까지 다양한 형태의 알고리듬이 개발되어 다양한 응용 분야에서 사용되어 왔다. 이 중 fuzzy c-means (FCM)는 분할 기반의 클러스터링 기법에 속하는 알고리듬으로 1970년대에 정립된 이후 지금까지 사용되고 있는 대표적인 클러스터링 알고리듬 중의 하나이다. 하지만 FCM에는 여러 가지 문제점이 있으며 이를 해결하기 위해 지금까지도 다양한 FCM의 변형이 제안되고 있다. 이 논문에서는 먼저 FCM의 문제점을 살펴보고 이를 해결하기 위해 제안된 방법들을 통해 연구 방향을 제시하고자 한다. FCM의 문제점을 해결하고자 하는 대부분의 FCM 변형은 주어진 문제 영역의 지식을 활용하고 있다. 하지만 이 논문에서는 문제 영역을 한정하지 않고 모든 문제에 적용할 수 있는 일반적인 방안을 제시하는데 초점을 둔다. 제시하는 방안은 앞으로 더 많은 연구가 필요하지만 클러스터링을 연구하고자 하는 이들에게 최근의 연구 동향과 더불어 출발점을 제시할 수 있을 것으로 기대한다.

커널 밀도 추정을 이용한 Fuzzy C-Means의 초기화 (Initialization of Fuzzy C-Means Using Kernel Density Estimation)

  • 허경용;김광백
    • 한국정보통신학회논문지
    • /
    • 제15권8호
    • /
    • pp.1659-1664
    • /
    • 2011
  • Fuzzy C-Means (FCM)는 군집화를 위해 널리 사용되는 알고리듬 중 하나로 다양한 응용 분야에서 성공적으로 사용되어 왔다. 하지만 FCM은 여러 가지 단점을 가지고 있으며 초기 원형 설정이 그 중 하나이다. FCM은 국부 최적해에 수렴하므로 초기 원형 설정에 따라 군집화의 결과가 달라진다. 따라서 초기 원형의 설정은 군집화 결과 향상을 위해 중요하다. 이 논문에서는 이러한 FCM의 초기 원형 설정 문제를 해결하는 방안으로 커널 밀도 추정을 활용하는 방법을 제안한다. 커널 밀도 추정은 비모수적 분포들에도 사용할 수 있어 국부적인 데이터 밀도 추정에 유용하다. 제안한 방법에서는 커널 밀도 추정을 수행한 후 밀도가 높은 지역에 클러스터의 초기 원형을 설정하고 원형이 설정된 영역의 밀도를 감소시키는 과정을 반복함으로써 효율적으로 초기 원형을 선택할 수 있다. 제안된 방법이 일반적으로 사용되는 무작위 초기화 방법에 비해 효율적이라는 사실은 실험 결과를 통해 확인할 수 있다.

Comparison of Monte Carlo Simulation and Fuzzy Math Computation for Validation of Summation in Quantitative Risk Assessment

  • Im, Myung-Nam;Lee, Seung-Ju
    • Food Science and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.361-366
    • /
    • 2007
  • As the application of quantitative risk assessment (QRA) to food safety becomes widespread, it is now being questioned whether experimental results and simulated results coincide. Therefore, this paper comparatively analyzed experimental data and simulated data of the cross contamination, which needs summation of the simplest calculations in QRA, of chicken by Monte Carlo simulation and fuzzy math computation. In order to verify summation, the following basic operation was performed. For the experiment, thigh, breast, and a mixture of both parts were preserved for 24 hr at $20^{\circ}C$, and then the cell number of Salmonella spp. was measured. In order to examine the differences between experimental results and simulated results, we applied the descriptive statistics. The result was that mean value by fuzzy math computation was more similar to the experimental than that by Monte Carlo simulation, whereas other statistical descriptors by Monte Carlo simulation were more similar.

고농도 오존 예측을 위한 향상된 변환 기법과 예측 성능 평가 (Modified Transformation and Evaluation for High Concentration Ozone Predictions)

  • 천성표;김성신;이종범
    • 한국지능시스템학회논문지
    • /
    • 제17권4호
    • /
    • pp.435-442
    • /
    • 2007
  • 대기중의 고농도 오존의 피해를 줄이기 위해서, 고농도 오존 발생 전에 미리 오존 농도를 예측하기 위한 연구가 진행되었다. 하지만, 고농도 오존은 그 발생 빈도가 매우 희소하고, 대기 오존 생성 과정이 매우 비선형적이며 복잡한 특징이 있다. 이러한 특징을 극복하고 보다 정확한 예측 모델을 개발하기 위하여, 본 논문에서는 다양한 데이터 처리 기법을 도입하였다. 데이터 전처리과정에서 FCM(Fuzzy C-mean) 방법을 이용하여 오존 농도별 데이터 클러스터링을 시도하였으며, 결측 또는 비정상 데이터를 처리할 목적으로 Rejection 표본 추출법을 이용하였고, 모델의 입력과 출력의 상관관계를 향상시키기 위해서 로그 변환기법을 응용하였다. 오존 예측을 위한 모델링 기법은 DPNN(Dynamical Polynomial Neural Networks)을 이용하였으며, 최소 바이어스 판별법(Minimum Bias Criterion)으로 최적화된 모델을 선택하였다. 끝으로, 본 논문에서는 로그 변환기법이 예측 모델에 미치는 영향을 보이기 위해서 입력 데이터를 두 개의 집합으로 나누어 다양한 방법으로 예측 결과를 평가했다. 결과적으로 계절적 영향에 의해 특정 분포를 가지는 오존 관련 데이터에 있어서 로그 변환 방법이 모델의 성능을 향상시킬 수 있다는 것을 보였다.

펴지 군집화 알고리즘 기반의 웨이블릿 변환을 이용한 3차원 얼굴 인식 (3D Face Recognition using Wavelet Transform Based on Fuzzy Clustering Algorithm)

  • 이영학
    • 한국멀티미디어학회논문지
    • /
    • 제11권11호
    • /
    • pp.1501-1514
    • /
    • 2008
  • 깊이 값에 따른 얼굴의 형상은 사람의 특징을 나타내는 중요한 요소 중의 하나로서 각 사람마다 다른 모양을 가지고 있다. 다른 형상을 가진 얼굴 영상으로부터 분리한 주파수 성분은 동일 얼굴에 대한 또 다른 중요 특징 성분의 하나가 될 수 있다. 본 논문은 3차원 얼굴 영상에서 등고선 값을 따라 추출된 영역에 대하여 각 영역별로 주파수 분리를 이용하여 특징을 추출한다. 그리고 이 주파수에 대한 수정된 퍼지 군집화를 적용한 얼굴 인식 알고리즘을 제안한다. 먼저 객체와 배경을 분리하여 얼굴을 추출한 후 얼굴에서 가장 두드러진 형태인 코끝을 찾는다. 이를 이용하여 회전된 얼굴에 대해 정규화를 실시한다. 얼굴의 등고선 영역은 코끝을 기준으로 깊이 값에 따라 영역이 추출되며 이는 사람마다 서로 다른 형상 특징을 가진다. 등고선에 따라 획득된 3차원 얼굴 영상으로부터 이산 웨이블릿 변환을 이용하여 4가지의 주파수 성분을 추출하여 특징정보로 사용한다. 각각의 웨이블릿 주파수 성분을 추출한 등고선 영역에 대해 차원의 감소를 위하여 고유얼굴 추출과 특징 공간상에서 클래스간의 분리를 최대화시키기 위해 선형 판별 분석 알고리즘을 이용하여 유사도를 비교하였다. 본 논문에서는 클래스간의 분별 정보를 향상시키고자 각각의 등고선 영역과 각 영역의 주파수별로 수정된 퍼지 군집화 알고리즘을 적용하여 인식률을 향상 시켰으며, 코끝으로부터 깊이 값이 60인 영역의 경우 98.3%의 인식률을 나타내었다.

  • PDF