• Title/Summary/Keyword: Fuzzy-Sliding Mode Control

Search Result 220, Processing Time 0.031 seconds

Design of fuzzy logic controller based on adaptive variable structure controller (적응 가변구조 개념을 이용한 퍼지 제어기의 설계)

  • 박귀태;이기상;박태홍;배상욱;김성호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.382-386
    • /
    • 1992
  • In this paper, the author proposed FLVSC(Fuzzy Logic Variable Structure Controller), of which control rules are extracted from the concepts of VSC(Variable Structure Control). FLC(Fuzzy Logic Controller) based on linguistic rules has the advantages of not needing of some exact mathematical model for plant to be controlled. The proposed method has the characteristics which are viewed in conventional VSC, e.g. insensitivity to a class of disturbances, parameter variations and uncertainties in sliding mode. In addition, the method has the properties of FLC - noise rejection capability etc. The computer simulations have been carried out for a DC servo motor to show the usefulness of the proposed method and the effects of disturbances and parameter variations are considered.

  • PDF

A Study on Path Tracking Control for Mobile Robot Using Cross Coupling (크로스 커플링을 이용한 이동 로봇의 경로제어에 관한 연구)

  • Han, Young-Seok;Lee, Kwae-Hi
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2351-2353
    • /
    • 1998
  • This paper suggests the wheel controller for PWS(Power Wheeled Steering) mobile robot. The proposed controller consists of two parts. To control each motor, the sliding mode controller implemented. This method has robustness about modeling error and disturbance, so the velocity tracking is well guaranteed in the presence of varying load. The design of a fuzzy cross-coupling controller for a PWS mobile robot is described here. Fuzzy cross-coupling control directly minimizes the tracking error by coordinating the motion of the two drive wheels. The fuzzy cross-coupling controller has excellent disturbance rejection and therefore is advantageous when the robot is not loaded symmetrically. The capability of the proposed controller was verified through the computer simulation.

  • PDF

The Design of a Sliding Mode Controller with Fuzzy PI-type Reaching Law (퍼지 PI 형 도달법칙을 가지는 가변 구조 제어기의 설계)

  • 이재호;조기원;채창현;이상재
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.105-108
    • /
    • 2001
  • In this paper, we proposed a variable structure controller with fuzzy PI-쇼pe reaching law. we fuzzified as inputs to fuzzy system Rf(representative point's orthogonal distance(rd) to switching surface and RP's distance(r) to the origin of the 2-dimensional space whose coordinates are the error and the error rate. The increments of the coefficients $k_{p}$ and $k_{i}$, of the reaching law are calculated appropriate by the simplified Mamdanl inference. The proposed fuzzy PI-type reaching law makes it reduce the chattering and has no need to tune the PI parameters of reaching law. The effectiveness of the proposed fuzzy PI-type reaching law is shown by the simulation results of the control of a Ball-balance System.

  • PDF

Using GA-FSMC for Precise Water Level Control of Double Tank (GA-FSMC를 이용한 이중탱크의 정밀한 수위 제어)

  • 권용범;박현철;정종원;이준탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.131-134
    • /
    • 2002
  • 일반적인 산업현장에서 많이 사용되는 이중탱크 시스템은 동작점 근방에서 선형화하는 고전제어기법을 사용한 것으로서 큰 시간지연과 비선형성으로 인해 정확한 수학적 모델링이 어렵고 모델링을 하더라도 넓은 동작 영역에서 만족스로운 결과를 얻기 어렵다. 따라서, 비교적 모델링에 대한 의존도가 낮은 퍼지, 신경회로망, 유전알고리즘 등의 지능제어 기법들도 제안되고 있다. 그러나 이들 제어기 역시 외란이나 다양한 동작 모드들에 따른 제어기 변수들의 적응성 저하로 인해 안정화 가능 영역이 협소해 지는 것은 물론 시스템의 불안정 현상도 초래한다. 이에 반해, SMC(sliding mode controller)는 변수의 변동, 외란에 둔감한 강점을 갖고 있지만, 시스템의 상태에 따른 슬라이딩 평면 설정의 곤란성과 채터링(chattering)이 존재하는 문제점 이 있다. 따라서 본 논문에서는 이중 탱크 시스템의 정밀한 수위 제어를 위하여, GA과 FLC를 사용하여 최적 변수로 설정 할 수 있게 하고, 채터링 저감을 위해 시스템 동특성 변동과 외란 에 강인한 GA-FSMC(genetic algorithm fuzzy sliding mode controller)를 제안하였다. 시뮬레이션을 통해 종래의 제어기의 제어결과와 비교함으로써 제안하는 GA-FSMC의 우수성을 입증하고자 한다.

Takagi-Sugeno Fuzzy Controller for Efficiency Optimization of Induction Motor with Model Uncertainties (Takagi-Sugeno 퍼지 제어기를 이용한 불확실성을 포함한 유도전동기의 효율 최적화)

  • Lee, Sun-Young;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1646_1647
    • /
    • 2009
  • In this paper, Takagi-Sugeno(T-S) fuzzy controller and search method are developed for efficiency optimization of induction motors(IMs). The proposed control scheme consists of efficiency controller and adaptive backstepping controller. A search controller for which information of input of T-S fuzzy controller is included in efficiency controller that uses a direct vector controlled induction motor. A sliding mode observer is designed to estimate rotor flux and an adaptive backstepping controller is used to control of speed of IMs. Simulation results are presented to validate the proposed controller.

  • PDF

Performance Improvement of Controller using Fuzzy Inference Results of System Output (시스템 출력의 퍼지추론결과를 이용한 제어기의 성능 개선)

  • 이우영;최홍문
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.77-86
    • /
    • 1995
  • The new architecture that fuzzy logic control(FLC) with difficulties for tuning membership function (MF) is parallel with neural networks(NN) to be learned from the output of FLC is proposed. Therefore proposed scheme has the characteristics to utilize the expert knowledge in design process, to be learned during the operation without any learning mode. In this architecture, the function of the FLC is to supply the sliding surface which is constructed on the phase plane by rule base for giving the desired control characteristics and learning criterion of NN and the stabilization of the control performance before NN is learned, The function of the NN is to let the system trajectory be tracked to the sliding surface and reached to the stable point.

  • PDF

Design and Application of Gradient-descent-based Self-organizing Fuzzy Logic Controller (그래디언트 감소를 기반으로하는 자기구성 퍼지 제어기의 설계 및 응용)

  • 소상호;박동조
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.191-196
    • /
    • 1998
  • A new Fuzzy Logic Controller(FLC) called a Gradient-Descent Based Self-Organizing Controller is presented. The Self-Organizing Controller(SOC) has two inputs such as error and change of error, and updates control rules with monitoring a performance measure. There are many works in the SOC which concentrate on the self-organizing ability in control rule base, but have a few research on the performance measure which is akin to sliding mode control. With this procedure, we can get a robust performance measure on the SOC. To verify the perfomance of proposed controller, we have performed for the cart-pole system which is one of the well-known benchmark problem in the control literature.

  • PDF

Control of Robot Manipulators Using Time-Delay Estimation and Fuzzy Logic Systems

  • Bae, Hyo-Jeong;Jin, Maolin;Suh, Jinho;Lee, Jun Young;Chang, Pyung-Hun;Ahn, Doo-sung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1271-1279
    • /
    • 2017
  • A highly accurate model-free controller is proposed for trajectory tracking control of robot manipulators. The proposed controller incorporates time-delay estimation (TDE) to estimate and cancel continuous nonlinearities of robot dynamics, and exploits fuzzy logic systems to suppress the effect of the TDE error, which is due to discontinuous nonlinearities such as friction. To this end, integral sliding mode is defined using desired error dynamics, and a Mamdani-type fuzzy inference system is constructed. As a result, the proposed controller achieves the desired error dynamics well. Implementation of the proposed controller is easy because the design of the controller is intuitive and straightforward, and calculations of the complex robot dynamics are not required. The tracking performance of the proposed controller is verified experimentally using a 3-degree of freedom PUMA-type robot manipulator.

Design of FLC based on the concept of VSC for Home VCR Drum Motor

  • Park, Tae-Hong;Lee, Sang-Lak;Park, Gwi-Tae;Lee, Kee-Samg
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.25-32
    • /
    • 1995
  • In this paper, the FLVSC (Fuzzy Logic Variable Structure controller), of which control rules are extracted from the concepts of the VSC(Variable Structure control) is proposed and diesgned for drum motor(BLDC motor) in home VCR. The FLC (Fuzzy Logic Controller) based on linguistic rules has the advantages of not needing of some exact mathermatical model for plant to be controlled. The proposed method has the characteristics which are viewed in conventional VSC, e.g. insensitivity to a class of distrubances, parameter variations and uncertainites in a sliding mode. In addition, the method has the properties of the FLC-noise rejection capability etc. The computer simulation and experiment using DSP(TMS320C30) have been carried out for the servo control of VCR drum motor to show the usefulness of the proposed method.

  • PDF

Design of a SMC-type FLC and Its Equivalence

  • 최병재;곽성우;김병국
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.14-20
    • /
    • 1997
  • This paper proposes a new design method for the SMC-type FLC and shows that a SMC-type LFC is an extension of the SMC with BL. The conventional SMC-type FLC uses error and change-of-error as inputs of the FLC and generates the absolute value of a switching magnitude. Then, the fuzzy rule table is constructed on a two-dimensional space of the phase plane and has commonly the skew symmetric property. In this paper, we introduce a new variable, signed distance, from the skew symmetric property of the rule table. And thd variable becomes only a fuzzy variable that is used to generate the control input of a SMC-type FLC. that is, we design a new SMC-type FLC that uses a signed distance and a control input as the variables representing the contents of the rule-antecedent and the rule-con-sequent, respectively. Then the number of total rules is reduced and the control performance is almost the same as that of the conventional SMC-type FLC. Additionally, we derive the control law of the ordinary SMC with BL from a new SMC-type FLC. Namely, we show that a FLC is an extension of the SMC with BL.

  • PDF